메뉴 건너뛰기




Volumn , Issue , 2012, Pages 283-315

Virtues, pitfalls, and methodology of neuronal network modeling and simulations on supercomputers

Author keywords

[No Author keywords available]

Indexed keywords

BRAIN MODELS; NEURONS; SUPERCOMPUTERS;

EID: 84956558755     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1007/978-94-007-3858-4_10     Document Type: Chapter
Times cited : (9)

References (85)
  • 1
    • 0030947941 scopus 로고    scopus 로고
    • Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex
    • Amit DJ, Brunei N (1997) Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. Cereb Cortex 7:237-252
    • (1997) Cereb Cortex , vol.7 , pp. 237-252
    • Amit, D.J.1    Brunei, N.2
  • 4
    • 77954387306 scopus 로고    scopus 로고
    • Multi-area neural mass modeling of EEG and MEG signals
    • Babajani-Feremi A, Soltanian-Zadeh H (2010) Multi-area neural mass modeling of EEG and MEG signals. Neuroimage 52(3):793-811
    • (2010) Neuroimage , vol.52 , Issue.3 , pp. 793-811
    • Babajani-Feremi, A.1    Soltanian-Zadeh, H.2
  • 5
    • 0024125851 scopus 로고
    • Why VLSI implementations of associative VLCNs require connection multiplexing
    • San Diego, USA
    • Bailey J, Hammerstrom D (1988) Why VLSI implementations of associative VLCNs require connection multiplexing. International Conference on Neural Networks, San Diego, USA 2, pp 173-180
    • (1988) International Conference on Neural Networks , vol.2 , pp. 173-180
    • Bailey, J.1    Hammerstrom, D.2
  • 6
    • 0020529191 scopus 로고
    • The number of neurons in the different laminae of the binocular and monocular regions of area 17 in the cat
    • Beaulieu C, Colonnier M (1983) The number of neurons in the different laminae of the binocular and monocular regions of area 17 in the cat. J Comp Neurology 217:337-344
    • (1983) J Comp Neurology , vol.217 , pp. 337-344
    • Beaulieu, C.1    Colonnier, M.2
  • 7
    • 4744358521 scopus 로고    scopus 로고
    • A quantitative map of the circuit of cat primary visual cortex
    • Binzegger T, Douglas RJ, Martin KAC (2004) A quantitative map of the circuit of cat primary visual cortex. J Neurosci 39(24):8441-8453
    • (2004) J Neurosci , vol.39 , Issue.24 , pp. 8441-8453
    • Binzegger, T.1    Douglas, R.J.2    Martin, K.3
  • 8
    • 0033740171 scopus 로고    scopus 로고
    • Point-to-point connectivity between neuromorphic chips using address events
    • Boahen KA (2000) Point-to-point connectivity between neuromorphic chips using address events. IEEE Trans Circuits Syst II: Analog Digit Signal Process 47:416-434
    • (2000) IEEE Trans Circuits Syst II: Analog Digit Signal Process , vol.47 , pp. 416-434
    • Boahen, K.A.1
  • 9
    • 77954534490 scopus 로고    scopus 로고
    • Connecting mean field models of neural activity to EEG and fMRI data
    • Bojak I, Oostendorp TF, Reid AT, Kotter R (2010) Connecting mean field models of neural activity to EEG and fMRI data. Brain Topogr 23:139-149
    • (2010) Brain Topogr , vol.23 , pp. 139-149
    • Bojak, I.1    Oostendorp, T.F.2    Reid, A.T.3    Kotter, R.4
  • 10
    • 35248841297 scopus 로고    scopus 로고
    • Exact simulation of integrate-and-fire models with exponential currents
    • Brette R (2007) Exact simulation of integrate-and-fire models with exponential currents. Neural Comput 19(10):2604-2609
    • (2007) Neural Comput , vol.19 , Issue.10 , pp. 2604-2609
    • Brette, R.1
  • 11
    • 27144498986 scopus 로고    scopus 로고
    • Adaptive exponential integrate-and-fire model as an effective description of neuronal activity
    • Brette R, Gerstner W (2005) Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J Neurophysiol 94(5):3637-3642
    • (2005) J Neurophysiol , vol.94 , Issue.5 , pp. 3637-3642
    • Brette, R.1    Gerstner, W.2
  • 14
    • 0034006515 scopus 로고    scopus 로고
    • Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons
    • Brunel N (2000) Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J Comput Neurosci 8(3):183-208
    • (2000) J Comput Neurosci , vol.8 , Issue.3 , pp. 183-208
    • Brunel, N.1
  • 15
    • 40749088917 scopus 로고    scopus 로고
    • Lapicque’s 1907 paper: From frogs to integrate-and-fire
    • Brunel N, van Rossum MCW (2007) Lapicque’s 1907 paper: from frogs to integrate-and-fire. Biol Cybern 97:337-339
    • (2007) Biol Cybern , vol.97 , pp. 337-339
    • Brunel, N.1    Van Rossum, M.2
  • 16
    • 7044239641 scopus 로고    scopus 로고
    • Modeling the hemodynamic response to brain activation
    • Buxton RB, Uludag K, Dubowitz DJ, Liu TT (2004) Modeling the hemodynamic response to brain activation. Neuroimage 23(Supplement 1):S220-S233
    • (2004) Neuroimage , vol.23
    • Buxton, R.B.1    Uludag, K.2    Dubowitz, D.J.3    Liu, T.T.4
  • 18
    • 77049115785 scopus 로고    scopus 로고
    • Voltage-sensitive dye imaging: Technique review and models
    • Chemla S, Chavane F (2010) Voltage-sensitive dye imaging: technique review and models. J Physiol Paris 104(1-2):40-50
    • (2010) J Physiol Paris , vol.104 , Issue.1-2 , pp. 40-50
    • Chemla, S.1    Chavane, F.2
  • 21
    • 44949119436 scopus 로고    scopus 로고
    • Why are computational neuroscience and systems biology so separate?
    • De Schutter E (2008) Why are computational neuroscience and systems biology so separate? PLoS Comput Biol 4(5):e1000078
    • (2008) Plos Comput Biol 4(5)
    • De Schutter, E.1
  • 22
    • 85027938510 scopus 로고    scopus 로고
    • Comparative power spectral analysis of simultaneous electroencephalographic and magnetoencephalographic recordings in humans suggests non-resistive extracellular media: EEG and MEG power spectra
    • Dehghani N, Bedard C, Cash S, Halgren E, Destexhe A (2010) Comparative power spectral analysis of simultaneous electroencephalographic and magnetoencephalographic recordings in humans suggests non-resistive extracellular media: EEG and MEG power spectra. J Comput Neurosci 29(3):405-421
    • (2010) J Comput Neurosci , vol.29 , Issue.3 , pp. 405-421
    • Dehghani, N.1    Bedard, C.2    Cash, S.3    Halgren, E.4    Destexhe, A.5
  • 23
    • 77953494546 scopus 로고    scopus 로고
    • Fast and exact simulation methods applied on a broad range of neuron models
    • D’Haene M, Schrauwen B (2010) Fast and exact simulation methods applied on a broad range of neuron models. Neural Comput 22(6):1468-1472
    • (2010) Neural Comput , vol.22 , Issue.6 , pp. 1468-1472
    • D’haene, M.1    Schrauwen, B.2
  • 25
    • 84865527851 scopus 로고    scopus 로고
    • The connection-set algebra-a novel formalism for the representation of connectivity structure in neuronal Network models
    • Online first
    • Djurfeldt M (2012) The connection-set algebra-a novel formalism for the representation of connectivity structure in neuronal Network models. Neuroinformatics. doi:10.1007/s12021-012-9146-1. Online first
    • (2012) Neuroinformatics
    • Djurfeldt, M.1
  • 26
    • 77953477779 scopus 로고    scopus 로고
    • Workshop report: 1st INCF workshop on large-scale modeling of the nervous system
    • Stockholm, Sweden
    • Djurfeldt M, Lansner A (2007) Workshop report: 1st INCF workshop on large-scale modeling of the nervous system, Nature Precedings, Stockholm, Sweden
    • (2007) Nature Precedings
    • Djurfeldt, M.1    Lansner, A.2
  • 30
    • 0021598827 scopus 로고
    • Parabolic bursting in an excitable system coupled with a slow oscillation
    • Ermentrout GB, Kopell N (1984) Parabolic bursting in an excitable system coupled with a slow oscillation. SIAM J Appl Math 44:1133-1149
    • (1984) SIAM J Appl Math , vol.44 , pp. 1133-1149
    • Ermentrout, G.B.1    Kopell, N.2
  • 32
    • 0347694858 scopus 로고    scopus 로고
    • How spike generation mechanisms determine the neuronal response to fluctuating inputs
    • Fourcaud-Trocme N, Hansel D, van Vreeswijk C, Brunel N (2003) How spike generation mechanisms determine the neuronal response to fluctuating inputs. J Neurosci 23:11628-11640
    • (2003) J Neurosci , vol.23 , pp. 11628-11640
    • Fourcaud-Trocme, N.1    Hansel, D.2    Van Vreeswijk, C.3    Brunel, N.4
  • 33
    • 0022624619 scopus 로고
    • Quantitative distribution of GABA-immunoreactive neurons in the visual cortex (Area 17) of the cat
    • Gabbott PL, Somogyi P (1986) Quantitative distribution of GABA-immunoreactive neurons in the visual cortex (area 17) of the cat. Exp Brain Res 61(2):323-331
    • (1986) Exp Brain Res , vol.61 , Issue.2 , pp. 323-331
    • Gabbott, P.L.1    Somogyi, P.2
  • 35
    • 37149048159 scopus 로고    scopus 로고
    • In vivo calcium imaging of neural network function
    • Gobel W, Helmchen F (2007) In vivo calcium imaging of neural network function. Physiology 22:358-365
    • (2007) Physiology , vol.22 , pp. 358-365
    • Gobel, W.1    Helmchen, F.2
  • 36
    • 64749087371 scopus 로고    scopus 로고
    • Data-driven significance estimation for precise spike correlation
    • Grün S (2009) Data-driven significance estimation for precise spike correlation. J Neurophysiol 101:1126-1140
    • (2009) J Neurophysiol , vol.101 , pp. 1126-1140
    • Grün, S.1
  • 37
    • 33750590110 scopus 로고    scopus 로고
    • Programmable logic construction kits for hyper-real-time neuronal modeling
    • Guerrero-Rivera R, Morrison A, Diesmann M, Pearce TC (2006) Programmable logic construction kits for hyper-real-time neuronal modeling. Neural Comput 18(11):2651-2679
    • (2006) Neural Comput , vol.18 , Issue.11 , pp. 2651-2679
    • Guerrero-Rivera, R.1    Morrison, A.2    Diesmann, M.3    Pearce, T.C.4
  • 38
    • 0031789641 scopus 로고    scopus 로고
    • Large neural network simulations on multiple hardware platforms
    • Hammarlund P, Ekeberg O (1998) Large neural network simulations on multiple hardware platforms. J Comp Neurosci 5:443-459
    • (1998) J Comp Neurosci , vol.5 , pp. 443-459
    • Hammarlund, P.1    Ekeberg, O.2
  • 39
    • 0029258143 scopus 로고
    • Synchrony in excitatory neural networks
    • Hansel D, Mato G, Meunier C (1995) Synchrony in excitatory neural networks. Neural Comp 7(2):307-337
    • (1995) Neural Comp , vol.7 , Issue.2 , pp. 307-337
    • Hansel, D.1    Mato, G.2    Meunier, C.3
  • 40
    • 79958294115 scopus 로고    scopus 로고
    • A general and efficient method for incorporating precise spike times in globally time-driven simulations
    • Hanuschkin A, Kunkel S, Helias M, Morrison A, Diesmann M (2010) A general and efficient method for incorporating precise spike times in globally time-driven simulations. Front Neuroinform 4:113
    • (2010) Front Neuroinform , vol.4 , pp. 113
    • Hanuschkin, A.1    Kunkel, S.2    Helias, M.3    Morrison, A.4    Diesmann, M.5
  • 41
    • 53149105555 scopus 로고    scopus 로고
    • Fully implicit parallel simulation of single neurons
    • Hines ML, Markram H, Schürmann F (2008) Fully implicit parallel simulation of single neurons. J Comput Neurosci 25(3):439-448
    • (2008) J Comput Neurosci , vol.25 , Issue.3 , pp. 439-448
    • Hines, M.L.1    Markram, H.2    Schürmann, F.3
  • 43
    • 77957775251 scopus 로고    scopus 로고
    • Artificial cognitive systems: From VLSI networks of spiking neurons to neuromorphic cognition
    • Indiveii G, Chicca E, Douglas RJ (2009) Artificial cognitive systems: from VLSI networks of spiking neurons to neuromorphic cognition. Cogn Comput 1:119-127
    • (2009) Cogn Comput , vol.1 , pp. 119-127
    • Indiveii, G.1    Chicca, E.2    Douglas, R.J.3
  • 44
    • 4344661328 scopus 로고    scopus 로고
    • Which model to use for cortical spiking neurons?
    • Izhikevich EM (2004) Which model to use for cortical spiking neurons? IEEE Trans Neural Netw 5(15):1063-1070
    • (2004) IEEE Trans Neural Netw , vol.5 , Issue.15 , pp. 1063-1070
    • Izhikevich, E.M.1
  • 45
    • 84956536093 scopus 로고    scopus 로고
    • 2011
    • Izhikevich E (2006) 2011, http://www.izhikevich.org/human_brain_simulation/Blue_Brain.htm
    • (2006)
    • Izhikevich, E.1
  • 50
    • 77953482919 scopus 로고    scopus 로고
    • Made-to-order spiking neuron model equipped with a multi-timescale adaptive threshold
    • Kobayashi R, Tsubo Y, Shinomoto S (2009) Made-to-order spiking neuron model equipped with a multi-timescale adaptive threshold. Front Comput Neurosci 3(9)
    • (2009) Front Comput Neurosci , vol.3 , Issue.9
    • Kobayashi, R.1    Tsubo, Y.2    Shinomoto, S.3
  • 51
    • 61649093252 scopus 로고    scopus 로고
    • Associative memory models - from cell assembly theory to biophysically detailed cortex simulations
    • Lansner A (2009) Associative memory models - from cell assembly theory to biophysically detailed cortex simulations. Trends Neurosci 32:178-186
    • (2009) Trends Neurosci , vol.32 , pp. 178-186
    • Lansner, A.1
  • 52
    • 0000115523 scopus 로고
    • Modeling Hebbian cell assemblies comprised of cortical neurons
    • Lansner A, Fransen E (1992) Modeling Hebbian cell assemblies comprised of cortical neurons. Netw Comput Neural Syst 3:105-119
    • (1992) Netw Comput Neural Syst , vol.3 , pp. 105-119
    • Lansner, A.1    Fransen, E.2
  • 54
    • 78651338035 scopus 로고    scopus 로고
    • Intrinsic dendritic filtering gives low-pass power spectra of local field potentials
    • Linden H, Pettersen KH, Einevoll GT (2010) Intrinsic dendritic filtering gives low-pass power spectra of local field potentials. J Comput Neurosci 29(3):423-444
    • (2010) J Comput Neurosci , vol.29 , Issue.3 , pp. 423-444
    • Linden, H.1    Pettersen, K.H.2    Einevoll, G.T.3
  • 56
    • 77955487287 scopus 로고    scopus 로고
    • Bistable, irregular firing and population oscillations in a modular attractor memory network
    • Lundqvist M, Compte A, Lansner A (2010a) Bistable, irregular firing and population oscillations in a modular attractor memory network. PLoS Comput Biol 6(6): 1-12
    • (2010) Plos Comput Biol , vol.6 , Issue.6 , pp. 1-12
    • Lundqvist, M.1    Compte, A.2    Lansner, A.3
  • 57
    • 84860390338 scopus 로고    scopus 로고
    • Theta and gamma power increases and alpha/-beta power decreases with memory load in an attractor network model
    • Lundqvist M, Herman P, Lansner A (2010b) Theta and gamma power increases and alpha/-beta power decreases with memory load in an attractor network model. J Cogn Neurosci 23(10):3008-3020
    • (2010) J Cogn Neurosci , vol.23 , Issue.10 , pp. 3008-3020
    • Lundqvist, M.1    Herman, P.2    Lansner, A.3
  • 60
    • 31444442519 scopus 로고    scopus 로고
    • The blue brain project
    • Markram H (2006) The blue brain project. Nat Rev Neurosci 7:153-160
    • (2006) Nat Rev Neurosci , vol.7 , pp. 153-160
    • Markram, H.1
  • 62
    • 78649481350 scopus 로고    scopus 로고
    • Artificial neural networks in hardware: A survey of two decades of progress
    • Misra J, Saha I (2010) Artificial neural networks in hardware: a survey of two decades of progress. Neurocomputing 74:239-255
    • (2010) Neurocomputing , vol.74 , pp. 239-255
    • Misra, J.1    Saha, I.2
  • 63
    • 35548937297 scopus 로고    scopus 로고
    • Maintaining causality in discrete time neuronal network simulations
    • Beim Graben P, Zhou C, Thiel M, Kurths J, Springer, Berlin
    • Morrison A, Diesmann M (2008) Maintaining causality in discrete time neuronal network simulations. In: Beim Graben P, Zhou C, Thiel M, Kurths J (eds) Lectures in supercomputational neuroscience: dynamics in complex brain networks. Springer, Berlin, pp 267-278
    • (2008) Lectures in Supercomputational Neuroscience: Dynamics in Complex Brain Networks , pp. 267-278
    • Morrison, A.1    Diesmann, M.2
  • 64
    • 20844460509 scopus 로고    scopus 로고
    • Advancing the boundaries of high connectivity network simulation with distributed computing
    • Morrison A, Mehring C, Geisel T, Aertsen A, Diesmann M (2005) Advancing the boundaries of high connectivity network simulation with distributed computing. Neural Comput 17(8): 1776-1801
    • (2005) Neural Comput , vol.17 , Issue.8 , pp. 1776-1801
    • Morrison, A.1    Mehring, C.2    Geisel, T.3    Aertsen, A.4    Diesmann, M.5
  • 65
    • 34249703480 scopus 로고    scopus 로고
    • Spike-timing dependent plasticity in balanced random networks
    • Morrison A, Aertsen A, Diesmann M (2007a) Spike-timing dependent plasticity in balanced random networks. Neural Comput 19:1437-1467
    • (2007) Neural Comput , vol.19 , pp. 1437-1467
    • Morrison, A.1    Aertsen, A.2    Diesmann, M.3
  • 66
    • 33846013910 scopus 로고    scopus 로고
    • Exact subthreshold integration with continuous spike times in discrete time neural network simulations
    • Morrison A, Straube S, Plesser HE, Diesmann M (2007b) Exact subthreshold integration with continuous spike times in discrete time neural network simulations. Neural Comput 19(1): 47-79
    • (2007) Neural Comput , vol.19 , Issue.1 , pp. 47-79
    • Morrison, A.1    Straube, S.2    Plesser, H.E.3    Diesmann, M.4
  • 67
    • 43949102027 scopus 로고    scopus 로고
    • Phenomenological models of synaptic plasticity based on spike-timing
    • Morrison A, Diesmann M, Gerstner W (2008) Phenomenological models of synaptic plasticity based on spike-timing. Biol Cybern 98:459-478
    • (2008) Biol Cybern , vol.98 , pp. 459-478
    • Morrison, A.1    Diesmann, M.2    Gerstner, W.3
  • 68
    • 68149182671 scopus 로고    scopus 로고
    • A configurable simulation environment for the efficient simulation of large-scale spiking neural networks on graphics processors
    • Nageswarana JM, Dutt N, Krichmar JL, Nicolau A, Veidenbaum AV (2009) A configurable simulation environment for the efficient simulation of large-scale spiking neural networks on graphics processors. Neural Netw 22:791-800
    • (2009) Neural Netw , vol.22 , pp. 791-800
    • Nageswarana, J.M.1    Dutt, N.2    Krichmar, J.L.3    Nicolau, A.4    Veidenbaum, A.V.5
  • 70
    • 70049083053 scopus 로고    scopus 로고
    • Towards reproducible descriptions of neuronal network models
    • Nordlie E, Gewaltig M-O, Plesser HE (2009) Towards reproducible descriptions of neuronal network models. PLoS Comput Biol 5(8):e1000456
    • (2009) Plos Comput Biol , vol.5 , Issue.8
    • Nordlie, E.1    Gewaltig, M.-O.2    Plesser, H.E.3
  • 71
    • 67650317451 scopus 로고    scopus 로고
    • Simplicity and efficiency of integrate-and-fire neuron models
    • Plesser HE, Diesmann M (2009) Simplicity and efficiency of integrate-and-fire neuron models. Neural Comput 21:353-359
    • (2009) Neural Comput , vol.21 , pp. 353-359
    • Plesser, H.E.1    Diesmann, M.2
  • 73
    • 79958093750 scopus 로고    scopus 로고
    • Enabling functional neural circuit simulations with distributed computing of neuromodulated plasticity
    • Potjans W, Morrison A, Diesmann M (2010) Enabling functional neural circuit simulations with distributed computing of neuromodulated plasticity. Front Comput Neurosci 4(141). doi:10.3389/fncom.2010.00141
    • (2010) Front Comput Neurosci , vol.4 , Issue.141
    • Potjans, W.1    Morrison, A.2    Diesmann, M.3
  • 74
    • 70449346422 scopus 로고    scopus 로고
    • From neurons to circuits: Linear estimation of local field potentials
    • Rasch M, Logothetis NK, Kreiman G (2009) From neurons to circuits: linear estimation of local field potentials. J Neurosci 29:13785-13796
    • (2009) J Neurosci , vol.29 , pp. 13785-13796
    • Rasch, M.1    Logothetis, N.K.2    Kreiman, G.3
  • 75
    • 0033220632 scopus 로고    scopus 로고
    • Exact digital simulation of time-invariant linear systems with applications to neuronal modeling
    • Rotter S, Diesmann M (1999) Exact digital simulation of time-invariant linear systems with applications to neuronal modeling. Biol Cybern 81(5/6):381-402
    • (1999) Biol Cybern , vol.81 , Issue.5-6 , pp. 381-402
    • Rotter, S.1    Diesmann, M.2
  • 78
    • 36148967688 scopus 로고    scopus 로고
    • Biophysical model for integrating neuronal activity, EEG, fMRI and metabolism
    • Sotero RC, Trujillo-Barreto NJ (2008) Biophysical model for integrating neuronal activity, EEG, fMRI and metabolism. Neuroimage 39(1):290-309
    • (2008) Neuroimage , vol.39 , Issue.1 , pp. 290-309
    • Sotero, R.C.1    Trujillo-Barreto, N.J.2
  • 79
    • 70349109579 scopus 로고    scopus 로고
    • Representations of Odor in the Piriform Cortex
    • Stettler DD, Axel R (2009) Representations of Odor in the Piriform Cortex. Neuron 63: 854-864
    • (2009) Neuron , vol.63 , pp. 854-864
    • Stettler, D.D.1    Axel, R.2
  • 80
    • 74349095290 scopus 로고    scopus 로고
    • Luk W (2009) FPGA accelerated simulation of biologically plausible spiking neural networks
    • Napa, California
    • Thomas D, Luk W (2009) FPGA accelerated simulation of biologically plausible spiking neural networks. In: 17th IEEE symposium on field programmable custom computing machines, Napa, California, pp 45-52
    • 17Th IEEE Symposium on Field Programmable Custom Computing Machines , pp. 45-52
    • Thomas, D.1
  • 81
    • 0036716478 scopus 로고    scopus 로고
    • Synaptic connections and small circuits involving excitatory and inhibitory neurons in layer 2-5 of adult rat and cat neocortex: Triple intracellular recordings and biocytin labelling in vitro
    • Thomson AM, West DC, Wang Y, Bannister AP (2002) Synaptic connections and small circuits involving excitatory and inhibitory neurons in layer 2-5 of adult rat and cat neocortex: triple intracellular recordings and biocytin labelling in vitro. Cereb Cortex 12:936-953
    • (2002) Cereb Cortex , vol.12 , pp. 936-953
    • Thomson, A.M.1    West, D.C.2    Wang, Y.3    Bannister, A.P.4
  • 82
    • 0033068184 scopus 로고    scopus 로고
    • On the mechanism of the " - " frequency shift in neuronal oscillations induced in rat hippocampal slices by tetanic stimulation
    • Traub RD, Whittington MA, Buhl EH, Jefferys JGR, Faulkner HJ (1999) On the mechanism of the " - " frequency shift in neuronal oscillations induced in rat hippocampal slices by tetanic stimulation. J Neurosci 19(3): 1088-1105
    • (1999) J Neurosci , vol.19 , Issue.3 , pp. 1088-1105
    • Traub, R.D.1    Whittington, M.A.2    Buhl, E.H.3    Jefferys, J.4    Faulkner, H.J.5
  • 83
    • 68349146851 scopus 로고    scopus 로고
    • Generalization of the event-based Carnevale-Hines integration scheme for integrate-and-fire models
    • Van Elburg RAJ, van Ooyen A (2009) Generalization of the event-based Carnevale-Hines integration scheme for integrate-and-fire models. Neural Comput 21(7): 1913-1930. doi: 10.1162/neco.2009.07-08-815
    • (2009) Neural Comput , vol.21 , Issue.7 , pp. 1913-1930
    • Van Elburg, R.1    Van Ooyen, A.2
  • 84
    • 0029835892 scopus 로고    scopus 로고
    • Chaos in neuronal networks with balanced excitatory and inhibitory activity
    • Van Vreeswijk C, Sompolinsky H (1996) Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274:1724-1726
    • (1996) Science , vol.274 , pp. 1724-1726
    • Van Vreeswijk, C.1    Sompolinsky, H.2
  • 85
    • 84976828369 scopus 로고
    • (again). ACM SIGPLAN Notices 10:1 (Jan. 1975) (jointly issued as SIGIR FORUM 9:3 Winter 1974), Reprinted. In: Barstow D, Shrobe H, Sandewall E (eds), McGraw Hill, New York 1984 pp 3-18
    • Winograd T (1975) Breaking the complexity barrier (again). ACM SIGPLAN Notices 10:1 (Jan. 1975) (jointly issued as SIGIR FORUM 9:3 Winter 1974), pp 13-30 Reprinted. In: Barstow D, Shrobe H, Sandewall E (eds) Interactive programming environments. McGraw Hill, New York 1984 pp 3-18
    • (1975) Breaking the Complexity Barrier , pp. 13-30
    • Winograd, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.