메뉴 건너뛰기




Volumn 21, Issue 2, 2009, Pages 353-359

Simplicity and efficiency of integrate-and-fire neuron models

Author keywords

[No Author keywords available]

Indexed keywords

ACTION POTENTIAL; ANIMAL; ARTIFICIAL NEURAL NETWORK; BIOLOGICAL MODEL; COMPUTER SIMULATION; LETTER; NERVE CELL; NONLINEAR SYSTEM; PHYSIOLOGY;

EID: 67650317451     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/neco.2008.03-08-731     Document Type: Letter
Times cited : (18)

References (28)
  • 1
    • 0028166957 scopus 로고
    • Synaptic integration of NMDA and non-NMDA receptors in large neuronal network models solved by means of differential equations
    • Bernard, C., Ge, Y. C., Stockley, E., Willis, J. B., & Wheal, H. V. (1994). Synaptic integration of NMDA and non-NMDA receptors in large neuronal network models solved by means of differential equations. Biol. Cybern., 70, 267-273.
    • (1994) Biol. Cybern. , vol.70 , pp. 267-273
    • Bernard, C.1    Ge, Y.C.2    Stockley, E.3    Willis, J.B.4    Wheal, H.V.5
  • 2
    • 33745838260 scopus 로고    scopus 로고
    • Exact simulation of integrate-and-fire models with synaptic conductances
    • Brette, R. (2006). Exact simulation of integrate-and-fire models with synaptic conductances. Neural Comput., 18, 2004-2027.
    • (2006) Neural Comput. , vol.18 , pp. 2004-2027
    • Brette, R.1
  • 3
    • 35248841297 scopus 로고    scopus 로고
    • Exact simulation of integrate-and-fire models with exponential currents
    • Brette, R. (2007). Exact simulation of integrate-and-fire models with exponential currents. Neural Comput., 19, 2604-2609.
    • (2007) Neural Comput. , vol.19 , pp. 2604-2609
    • Brette, R.1
  • 5
    • 0034006515 scopus 로고    scopus 로고
    • Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons
    • Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J. Comput. Neurosci., 8, 183-208.
    • (2000) J. Comput. Neurosci. , vol.8 , pp. 183-208
    • Brunel, N.1
  • 6
    • 33745712258 scopus 로고    scopus 로고
    • A review of the integrate-and-fire neuron model: I Homogeneous synaptic input
    • Burkitt, A. N. (2006a). A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input. Biol. Cybern., 95, 1-19.
    • (2006) Biol. Cybern. , vol.95 , pp. 1-19
    • Burkitt, A.N.1
  • 7
    • 33745730999 scopus 로고    scopus 로고
    • A review of the integrate-and-fire neuron model: II Inhomogeneous synaptic input and network properties
    • Burkitt, A. N. (2006b). A review of the integrate-and-fire neuron model: II. Inhomogeneous synaptic input and network properties. Biol. Cybern., 95, 97-112.
    • (2006) Biol. Cybern. , vol.95 , pp. 97-112
    • Burkitt, A.N.1
  • 8
    • 34147171012 scopus 로고    scopus 로고
    • Interoperability of neuroscience modeling software: Current status and future directions
    • Cannon, R. C., Gewaltig, M.-O., Gleeson, P., Bhalla, U. S., Cornelis, H., Hines, M. L., et al. (2007). Interoperability of neuroscience modeling software: Current status and future directions. Neuroinformatics, 5, 127-138.
    • (2007) Neuroinformatics , vol.5 , pp. 127-138
    • Cannon, R.C.1    Gewaltig, M.-O.2    Gleeson, P.3    Bhalla, U.S.4    Cornelis, H.5    Hines, M.L.6
  • 9
    • 0346365195 scopus 로고    scopus 로고
    • SpikeNET: An event-driven simulation package for modelling large networks of spiking neurons
    • Delorme, A., & Thorpe, S. J. (2003). SpikeNET: An event-driven simulation package for modelling large networks of spiking neurons. Network-Comp. Neural, 14, 613-627.
    • (2003) Network-Comp. Neural. , vol.14 , pp. 613-627
    • Delorme, A.1    Thorpe, S.J.2
  • 10
    • 67650327576 scopus 로고    scopus 로고
    • Large-scale modeling-a tool for conquering the complexity of the brain
    • Djurfeldt, M., Ekeberg, Ö., & Lansner, A. (2008). Large-scale modeling-a tool for conquering the complexity of the brain. Front. Neuroinform., 2, 1-4.
    • (2008) Front. Neuroinform. , vol.2 , pp. 1-4
    • Djurfeldt, M.1    Ekeberg, Ö.2    Lansner, A.3
  • 13
    • 43949092150 scopus 로고    scopus 로고
    • NEST (Neural Simulation Tool)
    • Gewaltig, M.-O., & Diesmann, M. (2007). NEST (Neural Simulation Tool). Scholarpedia, 2(4), 1430.
    • (2007) Scholarpedia , vol.2 , Issue.4 , pp. 1430
    • Gewaltig, M.-O.1    Diesmann, M.2
  • 14
    • 33750590110 scopus 로고    scopus 로고
    • Programmable logic construction kits for hyper real-time neuronal modeling
    • Guerrero-Rivera, R., Morrison, A., Diesmann, M., & Pearce, T. C. (2006). Programmable logic construction kits for hyper real-time neuronal modeling. Neural Comput., 18, 2651-2679.
    • (2006) Neural Comput. , vol.18 , pp. 2651-2679
    • Guerrero-Rivera, R.1    Morrison, A.2    Diesmann, M.3    Pearce, T.C.4
  • 15
    • 0032519099 scopus 로고    scopus 로고
    • On numerical simulations of integrate-and-fire neural networks
    • Hansel, D., Mato, G.,Meunier, C., & Neltner, L. (1998). On numerical simulations of integrate-and-fire neural networks. Neural Comput., 10, 467-483.
    • (1998) Neural Comput. , vol.10 , pp. 467-483
    • Hansel, D.1    Mato, G.2    Meunier, C.3    Neltner, L.4
  • 16
    • 42149192537 scopus 로고    scopus 로고
    • Large-scale model of mammalian thalamocortical systems
    • Izhikevich, E.M., & Edelman, G. M. (2008). Large-scale model of mammalian thalamocortical systems. Proc. Natl. Acad. Sci. USA, 105, 3593-3598.
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 3593-3598
    • Izhikevich, E.M.1    Edelman, G.M.2
  • 17
    • 37749046893 scopus 로고    scopus 로고
    • A very simple spiking neuron model that allows for modeling of large, complex systems
    • Lovelace, J. J., & Cios, K. J. (2008). A very simple spiking neuron model that allows for modeling of large, complex systems. Neural Comput., 20, 65-90.
    • (2008) Neural Comput. , vol.20 , pp. 65-90
    • Lovelace, J.J.1    Cios, K.J.2
  • 18
    • 0038454630 scopus 로고    scopus 로고
    • A discrete-event neural network simulator for general neuron models
    • Makino, T. (2003). A discrete-event neural network simulator for general neuron models. Neural Comput. and Applic., 11, 210-223.
    • (2003) Neural Comput. and Applic. , vol.11 , pp. 210-223
    • Makino, T.1
  • 20
    • 34249703480 scopus 로고    scopus 로고
    • Spike-time dependent plasticity in balanced recurrent networks
    • Morrison, A., Aertsen, A., & Diesmann, M. (2007). Spike-time dependent plasticity in balanced recurrent networks. Neural Comput., 19, 1437-1467.
    • (2007) Neural Comput. , vol.19 , pp. 1437-1467
    • Morrison, A.1    Aertsen, A.2    Diesmann, M.3
  • 21
    • 33846013910 scopus 로고    scopus 로고
    • Exact subthreshold integration with continuous spike times in discrete time neural network simulations
    • Morrison, A., Straube, S., Plesser, H. E., & Diesmann, M. (2007). Exact subthreshold integration with continuous spike times in discrete time neural network simulations. Neural Comput., 19, 47-79.
    • (2007) Neural Comput. , vol.19 , pp. 47-79
    • Morrison, A.1    Straube, S.2    Plesser, H.E.3    Diesmann, M.4
  • 22
    • 67650281441 scopus 로고    scopus 로고
    • Efficient parallel simulation of large-scale neuronal networks on clusters of multiprocessor computers
    • In A.-M. Kermarrec, L. Bougé, & T. Priol (Eds.), Euro-Par Berlin: Springer-Verlag 2007
    • Plesser, H. E., Eppler, J. M., Morrison, A., Diesmann, M., & Gewaltig, M.-O. (2007). Efficient parallel simulation of large-scale neuronal networks on clusters of multiprocessor computers. In A.-M. Kermarrec, L. Bougé, & T. Priol (Eds.), Euro-Par 2007: Parallel processing. Berlin: Springer-Verlag.
    • (2007) Parallel processing
    • Plesser, H.E.1    Eppler, J.M.2    Morrison, A.3    Diesmann, M.4    Gewaltig, M.-O.5
  • 24
    • 0033220632 scopus 로고    scopus 로고
    • Exact digital simulation of time-invariant linear systems with applications to neuronal modeling
    • Rotter, S., & Diesmann, M. (1999). Exact digital simulation of time-invariant linear systems with applications to neuronal modeling. Biol. Cybern., 81, 381-402.
    • (1999) Biol. Cybern. , vol.81 , pp. 381-402
    • Rotter, S.1    Diesmann, M.2
  • 25
    • 0035683779 scopus 로고    scopus 로고
    • Efficient and accurate time-stepping schemes for integrate-and-fire neuronal networks
    • Shelley, M. J., & Tao, L. (2001). Efficient and accurate time-stepping schemes for integrate-and-fire neuronal networks. J. Comput. Neurosci., 11, 111-119.
    • (2001) J. Comput. Neurosci. , vol.11 , pp. 111-119
    • Shelley, M.J.1    Tao, L.2
  • 26
    • 0040971085 scopus 로고
    • Fast calculation of synaptic conductances
    • Srinivasan, R.,&Chiel,H. J. (1993). Fast calculation of synaptic conductances. Neural Comput., 5, 200-204.
    • (1993) Neural Comput. , vol.5 , pp. 200-204
    • Srinivasan, R.1    Chiel, H.J.2
  • 27
    • 36849012131 scopus 로고    scopus 로고
    • Event-driven simulations of nonlinear integrate-and-fire neurons
    • Tonnelier, A., Belmabrouk, H., & Martinez, D. (2007). Event-driven simulations of nonlinear integrate-and-fire neurons. Neural Comput., 19, 3226-3238.
    • (2007) Neural Comput. , vol.19 , pp. 3226-3238
    • Tonnelier, A.1    Belmabrouk, H.2    Martinez, D.3
  • 28
    • 0002948614 scopus 로고
    • The simulation of large-scale neural networks
    • In C. Koch&I. Segev (Eds.), Cambridge, MA: MIT Press
    • Wilson,M. A., & Bower, J. M. (1989). The simulation of large-scale neural networks. In C. Koch&I. Segev (Eds.), Methods in neuronal-modeling: From synapses to networks (pp. 291-333). Cambridge, MA: MIT Press.
    • (1989) Methods in neuronal-modeling: From synapses to networks , pp. 291-333
    • Wilson, M.A.1    Bower, J.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.