메뉴 건너뛰기




Volumn 4, Issue OCT, 2010, Pages

A general and efficient method for incorporating precise spike times in globally time-driven simulations

Author keywords

Accuracy; Event driven; Non linear neuron models; Precise spike times; Time driven

Indexed keywords


EID: 79958294115     PISSN: 16625196     EISSN: None     Source Type: Journal    
DOI: 10.3389/fninf.2010.00113     Document Type: Article
Times cited : (58)

References (38)
  • 1
    • 35248841297 scopus 로고    scopus 로고
    • Exact simulation of integrate-and-fire models with exponential currents
    • Brette, R. (2007). Exact simulation of integrate-and-fire models with exponential currents. Neural Comput. 19, 2604-2609.
    • (2007) Neural Comput , vol.19 , pp. 2604-2609
    • Brette, R.1
  • 2
    • 27144498986 scopus 로고    scopus 로고
    • Adaptive exponential integrate-and-fire model as an effective description of neuronal activity
    • Brette, R., and Gerstner, W. (2005). Adaptive exponential integrate-and 2011 fire model as an effective description of neuronal activity. J. Neurophysiol. 94, 3637-3642.
    • (2005) J. Neurophysiol , vol.94 , pp. 3637-3642
    • Brette, R.1    Gerstner, W.2
  • 5
    • 0034006515 scopus 로고    scopus 로고
    • Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons
    • Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J. Comput. Neurosci. 8, 183-208.
    • (2000) J. Comput. Neurosci , vol.8 , pp. 183-208
    • Brunel, N.1
  • 7
    • 77953494546 scopus 로고    scopus 로고
    • Fast and exact simulation methods applied on a broad range of neuron models
    • D'Haene, M., and Schrauwen, B. (2010). Fast and exact simulation methods applied on a broad range of neuron models. Neural Comput. 22, 1468-1472.
    • (2010) Neural Comput , vol.22 , pp. 1468-1472
    • D'Haene, M.1    Schrauwen, B.2
  • 8
    • 65549102992 scopus 로고    scopus 로고
    • Accelerating event-driven simulation of spiking neurons with multiple synaptic time constants
    • D'Haene, M., Schrauwen, B., Van Campenhout, J., and Stroobandt, D. (2009). Accelerating event-driven simulation of spiking neurons with multiple synaptic time constants. Neural Comput. 21, 1068-1099.
    • (2009) Neural Comput , vol.21 , pp. 1068-1099
    • D'Haene, M.1    Schrauwen, B.2    Van Campenhout, J.3    Stroobandt, D.4
  • 9
    • 84890872353 scopus 로고    scopus 로고
    • The Performance of Solvers For Integrate-and-fire Models With Exact Spike Timing
    • Conference Abstract: Neuroinformatics, doi: 10.3389/conf.neuro.11.2008.01.014
    • Diesmann, M., Hanuschkin, A., Kunkel, S., Helias, M., and Morrison, A. (2008). The performance of solvers for integrate-and-fire models with exact spike timing. Front. Neuroinform. Conference Abstract: Neuroinformatics 2008. doi: 10.3389/conf.neuro.11.2008.01.014.
    • (2008) Front. Neuroinform , pp. 2008
    • Diesmann, M.1    Hanuschkin, A.2    Kunkel, S.3    Helias, M.4    Morrison, A.5
  • 10
    • 84890861283 scopus 로고    scopus 로고
    • PyNEST: A convenient interface to the NEST simulator
    • doi:10.3389/neuro.11.012.2008
    • Eppler, J. M., Helias, M., Muller, E., Diesmann, M., and Gewaltig, M. (2009). PyNEST: a convenient interface to the NEST simulator. Front. Neuroinform. 2:12. doi:10.3389/neuro.11.012.2008.
    • (2009) Front. Neuroinform , vol.2 , pp. 12
    • Eppler, J.M.1    Helias, M.2    Muller, E.3    Diesmann, M.4    Gewaltig, M.5
  • 11
    • 0022693272 scopus 로고
    • Parabolic bursting in an excitable system coupled with a slow oscillation
    • Ermentrout, G. B., and Kopell, N. (1986). Parabolic bursting in an excitable system coupled with a slow oscillation. SIAM J. Appl. Math. 46, 233-253.
    • (1986) SIAM J. Appl. Math , vol.46 , pp. 233-253
    • Ermentrout, G.B.1    Kopell, N.2
  • 14
    • 84872052514 scopus 로고    scopus 로고
    • Adaptive exponential integrate-and-fire model
    • Gerstner, W., and Brette, R. (2009). Adaptive exponential integrate-and-fire model. Scholarpedia 4, 8427.
    • (2009) Scholarpedia , vol.4 , pp. 8427
    • Gerstner, W.1    Brette, R.2
  • 15
    • 43949092150 scopus 로고    scopus 로고
    • NEST (Neural Simulation Tool)
    • Gewaltig, M.-O., and Diesmann, M. (2007). NEST (Neural Simulation Tool). Scholarpedia 2, 1430.
    • (2007) Scholarpedia , vol.2 , pp. 1430
    • Gewaltig, M.-O.1    Diesmann, M.2
  • 16
    • 33750590110 scopus 로고    scopus 로고
    • Programmable logic construction kits for hyper real-time neuronal modeling
    • Guerrero-Rivera, R., Morrison, A., Diesmann, M., and Pearce, T. C. (2006). Programmable logic construction kits for hyper real-time neuronal modeling. Neural Comput. 18, 2651-2679.
    • (2006) Neural Comput , vol.18 , pp. 2651-2679
    • Guerrero-Rivera, R.1    Morrison, A.2    Diesmann, M.3    Pearce, T.C.4
  • 17
    • 0032519099 scopus 로고    scopus 로고
    • On numerical simulations of integrate-and-fire neural networks
    • Hansel, D., Mato, G., Meunier, C., and Neltner, L. (1998). On numerical simulations of integrate-and-fire neural networks. Neural Comput. 10, 467-483.
    • (1998) Neural Comput , vol.10 , pp. 467-483
    • Hansel, D.1    Mato, G.2    Meunier, C.3    Neltner, L.4
  • 18
    • 84890875561 scopus 로고    scopus 로고
    • Comparison of methods to calculate exact spike times in integrate-and-fire neurons with exponential currents
    • Hanuschkin, A., Kunkel, S., Helias, M., Morrison, A., and Diesmann, M. (2008). Comparison of methods to calculate exact spike times in integrate-and-fire neurons with exponential currents. BMC Neurosci. 9(Suppl. 1), P131.
    • (2008) BMC Neurosci , vol.9 , Issue.SUPPL. 1
    • Hanuschkin, A.1    Kunkel, S.2    Helias, M.3    Morrison, A.4    Diesmann, M.5
  • 19
    • 1542327624 scopus 로고    scopus 로고
    • Neuronal integration of synaptic input in the fluctuation-driven regime
    • Kuhn, A., Aertsen, A., and Rotter, S. (2004). Neuronal integration of synaptic input in the fluctuation-driven regime. J. Neurosci. 24, 2345-2356.
    • (2004) J. Neurosci , vol.24 , pp. 2345-2356
    • Kuhn, A.1    Aertsen, A.2    Rotter, S.3
  • 20
    • 37749044130 scopus 로고    scopus 로고
    • The high-conductance state of cortical networks
    • Kumar, A., Schrader, S., Aertsen, A., and Rotter, S. (2008). The high-conductance state of cortical networks. Neural Comput. 20, 1-43.
    • (2008) Neural Comput , vol.20 , pp. 1-43
    • Kumar, A.1    Schrader, S.2    Aertsen, A.3    Rotter, S.4
  • 22
    • 17044361819 scopus 로고    scopus 로고
    • Independent variable time-step integration of individual neurons for network simulations
    • Lytton, W. W., and Hines, M. L. (2005). Independent variable time-step integration of individual neurons for network simulations. Neural Comput. 17, 903-921.
    • (2005) Neural Comput , vol.17 , pp. 903-921
    • Lytton, W.W.1    Hines, M.L.2
  • 23
    • 59149087290 scopus 로고    scopus 로고
    • Spike-timing error backpropagation in theta neuron networks
    • McKennoch, S., Voegtlin, T., and Bushnell, L. (2009). Spike-timing error backpropagation in theta neuron networks. Neural Comput. 21, 9-45.
    • (2009) Neural Comput , vol.21 , pp. 9-45
    • McKennoch, S.1    Voegtlin, T.2    Bushnell, L.3
  • 25
    • 63249097213 scopus 로고    scopus 로고
    • A generalized linear integrate-and-fire neural model produces diverse spiking behaviors
    • Mihalas, S., and Niebur, E. (2010). A generalized linear integrate-and-fire neural model produces diverse spiking behaviors. Neural Comput. 21, 704-718.
    • (2010) Neural Comput , vol.21 , pp. 704-718
    • Mihalas, S.1    Niebur, E.2
  • 26
    • 0025567093 scopus 로고
    • Synchronization of pulse-coupled biological oscillators
    • Mirollo, R. E., and Strogatz, S. H. (1990). Synchronization of pulse-coupled biological oscillators. J. Appl. Math. 50, 1645-1662.
    • (1990) J. Appl. Math , vol.50 , pp. 1645-1662
    • Mirollo, R.E.1    Strogatz, S.H.2
  • 28
    • 20844460509 scopus 로고    scopus 로고
    • Advancing the boundaries of high connectivity network simulation with distributed computing
    • Morrison, A., Mehring, C., Geisel, T., Aertsen, A., and Diesmann, M. (2005). Advancing the boundaries of high connectivity network simulation with distributed computing. Neural Comput. 17, 1776-1801.
    • (2005) Neural Comput , vol.17 , pp. 1776-1801
    • Morrison, A.1    Mehring, C.2    Geisel, T.3    Aertsen, A.4    Diesmann, M.5
  • 29
    • 33846013910 scopus 로고    scopus 로고
    • Exact subthreshold integration with continuous spike times in discrete time neural network simulations
    • Morrison, A., Straube, S., Plesser, H. E., and Diesmann, M. (2007). Exact subthreshold integration with continuous spike times in discrete time neural network simulations. Neural Comput. 19, 47-79.
    • (2007) Neural Comput , vol.19 , pp. 47-79
    • Morrison, A.1    Straube, S.2    Plesser, H.E.3    Diesmann, M.4
  • 30
    • 56449095252 scopus 로고    scopus 로고
    • Firing patterns in the adaptive exponential integrate-and-fire model
    • Naud, R., Marcille, N., Clopath, C., and Gerstner, W. (2008). Firing patterns in the adaptive exponential integrate-and-fire model. Biol. Cybern. 99, 335-347.
    • (2008) Biol. Cybern , vol.99 , pp. 335-347
    • Naud, R.1    Marcille, N.2    Clopath, C.3    Gerstner, W.4
  • 31
    • 67650317451 scopus 로고    scopus 로고
    • Simplicity and efficiency of integrate-and-fire neuron models
    • Plesser, H. E., and Diesmann, M. (2009). Simplicity and efficiency of integrate, 2011 and-fire neuron models. Neural Comput. 21, 353-359.
    • (2009) Neural Comput , vol.21 , pp. 353-359
    • Plesser, H.E.1    Diesmann, M.2
  • 32
    • 38049110006 scopus 로고    scopus 로고
    • Efficient parallel simulation of large-scale neuronal networks on clusters of multiprocessor computers
    • Lecture Notes in Computer Science, eds A.-M. Kermarrec, L. Bougé, and T. Priol (Berlin: Springer-Verlag
    • Plesser, H. E., Eppler, J. M., Morrison, A., Diesmann, M., and Gewaltig, M.-O. (2007). "Efficient parallel simulation of large-scale neuronal networks on clusters of multiprocessor computers," in Euro-Par 2007: Parallel Processing, Vol. 4641, Lecture Notes in Computer Science, eds A.-M. Kermarrec, L. Bougé, and T. Priol (Berlin: Springer-Verlag), 672-681.
    • (2007) Euro-Par 2007: Parallel Processing , vol.4641 , pp. 672-681
    • Plesser, H.E.1    Eppler, J.M.2    Morrison, A.3    Diesmann, M.4    Gewaltig, M.-O.5
  • 34
    • 0033220632 scopus 로고    scopus 로고
    • Exact digital simulation of time-invariant linear systems with applications to neuronal modeling
    • Rotter, S., and Diesmann, M. (1999). Exact digital simulation of time-invariant linear systems with applications to neuronal modeling. Biol. Cybern. 81, 381-402.
    • (1999) Biol. Cybern , vol.81 , pp. 381-402
    • Rotter, S.1    Diesmann, M.2
  • 35
    • 56349166622 scopus 로고    scopus 로고
    • Wafer-scale integration of analog neural networks
    • Piscataway, NJ: IEEE Press
    • Schemmel, J., Fieres, J., and Meier, K. (2008). "Wafer-scale integration of analog neural networks," in Proceedings IJCNN2008. Piscataway, NJ: IEEE Press.
    • (2008) Proceedings IJCNN2008
    • Schemmel, J.1    Fieres, J.2    Meier, K.3
  • 36
    • 0035683779 scopus 로고    scopus 로고
    • Efficient and accurate time-stepping schemes for integrate-and-fire neuronal networks
    • Shelley, M. J., and Tao, L. (2001). Efficient and accurate time-stepping schemes for integrate-and-fire neuronal networks. J. Comput. Neurosci. 11, 111-119.
    • (2001) J. Comput. Neurosci , vol.11 , pp. 111-119
    • Shelley, M.J.1    Tao, L.2
  • 37
    • 68349146851 scopus 로고    scopus 로고
    • Generalization of the event-based Carnevale-Hines integration scheme for integrate-and-fire models
    • van Elburg, R. A. J., and van Ooyen, A. (2009). Generalization of the event-based Carnevale-Hines integration scheme for integrate-and-fire models. Neural Comput. 21, 1913-1930.
    • (2009) Neural Comput , vol.21 , pp. 1913-1930
    • van Elburg, R.A.J.1    van Ooyen, A.2
  • 38
    • 65049092132 scopus 로고    scopus 로고
    • Voltage-stepping schemes for the simulation of spiking neural networks
    • Zheng, G., Tonnelier, A., and Martinez, D. (2009). Voltage-stepping schemes for the simulation of spiking neural networks. J. Comput. Neurosci. 26, 409-423.
    • (2009) J. Comput. Neurosci , vol.26 , pp. 409-423
    • Zheng, G.1    Tonnelier, A.2    Martinez, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.