메뉴 건너뛰기




Volumn 190, Issue , 2016, Pages 10-24

Domain adaptation via Multi-Layer Transfer Learning

Author keywords

Cross domain classification; Multi Layer; Non Negative Matrix Tri Factorization; Transfer Learning

Indexed keywords

ALGORITHMS; FACTORIZATION; ITERATIVE METHODS; LEARNING SYSTEMS; OPTIMIZATION;

EID: 84955463226     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2015.12.097     Document Type: Article
Times cited : (33)

References (36)
  • 1
    • 77956031473 scopus 로고    scopus 로고
    • A survey on transfer learning
    • Pan S.J., Yang Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2010, 22(10):1345-1359.
    • (2010) IEEE Trans. Knowl. Data Eng. , vol.22 , Issue.10 , pp. 1345-1359
    • Pan, S.J.1    Yang, Q.2
  • 4
    • 79551714932 scopus 로고    scopus 로고
    • Exploiting associations between word clusters and document classes for cross-domain text categorization
    • Zhuang F.Z., Luo P., Xiong H., He Q., Xiong Y.H., Shi Z.Z. Exploiting associations between word clusters and document classes for cross-domain text categorization. Stat. Anal. Data Min.: ASA Data Sci. J. 2011, 4(1):100-114.
    • (2011) Stat. Anal. Data Min.: ASA Data Sci. J. , vol.4 , Issue.1 , pp. 100-114
    • Zhuang, F.Z.1    Luo, P.2    Xiong, H.3    He, Q.4    Xiong, Y.H.5    Shi, Z.Z.6
  • 6
    • 84903132879 scopus 로고    scopus 로고
    • Triplex transfer learning. exploiting both shared and distinct concepts for text classification
    • Zhuang F.Z., Luo P., Du C.Y., He Q., Shi Z.Z. Triplex transfer learning. exploiting both shared and distinct concepts for text classification. IEEE Trans. Cybern. 2014, 44(7):1191-1203.
    • (2014) IEEE Trans. Cybern. , vol.44 , Issue.7 , pp. 1191-1203
    • Zhuang, F.Z.1    Luo, P.2    Du, C.Y.3    He, Q.4    Shi, Z.Z.5
  • 9
    • 0034818212 scopus 로고    scopus 로고
    • Unsupervised learning by probabilistic latent semantic analysis
    • Hofmann T. Unsupervised learning by probabilistic latent semantic analysis. Mach. Learn. 2001, 42(1-2):177-196.
    • (2001) Mach. Learn. , vol.42 , Issue.1-2 , pp. 177-196
    • Hofmann, T.1
  • 11
    • 40049107811 scopus 로고    scopus 로고
    • Evigan. a hidden variable model for integrating gene evidence for eukaryotic gene prediction
    • Liu Q., Mackey A.J., Roos D.S., Pereira F.C.N. Evigan. a hidden variable model for integrating gene evidence for eukaryotic gene prediction. Bioinformatics 2008, 24(5):597-605.
    • (2008) Bioinformatics , vol.24 , Issue.5 , pp. 597-605
    • Liu, Q.1    Mackey, A.J.2    Roos, D.S.3    Pereira, F.C.N.4
  • 13
    • 78651280445 scopus 로고    scopus 로고
    • Collaborative dual-plsa: mining distinction and commonality across multiple domains for text classification
    • F.Z. Zhuang, P. Luo, Z. Shen, Q. He, Y. Xiong, Z.Z. Shi, H. Xiong, Collaborative dual-plsa: mining distinction and commonality across multiple domains for text classification, In: Proc. of the 19th ACM CIKM, 2010, pp. 359-368.
    • (2010) Proc. of the 19th ACM CIKM , pp. 359-368
    • Zhuang, F.Z.1    Luo, P.2    Shen, Z.3    He, Q.4    Xiong, Y.5    Shi, Z.Z.6    Xiong, H.7
  • 14
    • 80052124118 scopus 로고    scopus 로고
    • Cross-language web page classification via dual knowledge transfer using nonnegative matrix tri-factorization
    • H. Wang, H. Huang, F. Nie, C. Ding, Cross-language web page classification via dual knowledge transfer using nonnegative matrix tri-factorization, In: Proceedings of the 34th ACM SIGIR, 2011, pp. 933-942.
    • (2011) Proceedings of the 34th ACM SIGIR , pp. 933-942
    • Wang, H.1    Huang, H.2    Nie, F.3    Ding, C.4
  • 25
    • 84860538689 scopus 로고    scopus 로고
    • Instance weighting for domain adaptation in nlp
    • J. Jiang, C.X. Zhai, Instance weighting for domain adaptation in nlp, in: Proceedings of the 45th ACL, 2007, pp. 264-271.
    • (2007) Proceedings of the 45th ACL , pp. 264-271
    • Jiang, J.1    Zhai, C.X.2
  • 26
    • 84860524227 scopus 로고    scopus 로고
    • Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification
    • J. Blitzer, M. Dredze, F. Pereira, Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification, In: Proceedings of the 45th ACL, 2007, pp. 440-447.
    • (2007) Proceedings of the 45th ACL , pp. 440-447
    • Blitzer, J.1    Dredze, M.2    Pereira, F.3
  • 27
    • 84880943551 scopus 로고    scopus 로고
    • Transfer learning for activity recognition. a survey
    • Cook D., Feuz K.D., Krishnan N.C. Transfer learning for activity recognition. a survey. Knowl. Inf. Syst. 2013, 36(3):537-556.
    • (2013) Knowl. Inf. Syst. , vol.36 , Issue.3 , pp. 537-556
    • Cook, D.1    Feuz, K.D.2    Krishnan, N.C.3
  • 28
    • 84922440761 scopus 로고    scopus 로고
    • Fuzzy transfer learning. methodology and application
    • Shell J., Coupland S. Fuzzy transfer learning. methodology and application. Inf. Sci. 2014, 293(1):59-79.
    • (2014) Inf. Sci. , vol.293 , Issue.1 , pp. 59-79
    • Shell, J.1    Coupland, S.2
  • 30
    • 84902178249 scopus 로고    scopus 로고
    • Transferring multi-device localization models using latent multi-task learning
    • Chicago, Illinois, USA
    • V.W. Zheng, S.J. Pan, Q. Yang, J.J. Pan, Transferring multi-device localization models using latent multi-task learning, In: AAAI, Chicago, Illinois, USA, vol. 8, 2008, pp. 1427-1432.
    • (2008) AAAI , vol.8 , pp. 1427-1432
    • Zheng, V.W.1    Pan, S.J.2    Yang, Q.3    Pan, J.J.4
  • 31
    • 77953216761 scopus 로고    scopus 로고
    • A shared-subspace learning framework for multi-label classification
    • Ji S., Tang L., Yu S., Ye J. A shared-subspace learning framework for multi-label classification. ACM Trans. Knowl. Discov. Data 2010, 4:2.
    • (2010) ACM Trans. Knowl. Discov. Data , vol.4 , pp. 2
    • Ji, S.1    Tang, L.2    Yu, S.3    Ye, J.4
  • 32
    • 84923342673 scopus 로고    scopus 로고
    • Multitask TSK fuzzy system modeling by mining intertask common hidden structure
    • Jiang Y., Chung F.L., Ishibuchi H., Deng Z., Wang S. Multitask TSK fuzzy system modeling by mining intertask common hidden structure. IEEE Trans. Cybern. 2015, 45(3):548-561.
    • (2015) IEEE Trans. Cybern. , vol.45 , Issue.3 , pp. 548-561
    • Jiang, Y.1    Chung, F.L.2    Ishibuchi, H.3    Deng, Z.4    Wang, S.5
  • 33
    • 84874916256 scopus 로고    scopus 로고
    • Transfer learning in heterogeneous collaborative filtering domains
    • Pan W., Yang Q. Transfer learning in heterogeneous collaborative filtering domains. Artif. Intell. 2013, 197(3):39-55.
    • (2013) Artif. Intell. , vol.197 , Issue.3 , pp. 39-55
    • Pan, W.1    Yang, Q.2
  • 36
    • 84911938464 scopus 로고    scopus 로고
    • Generalized hidden-mapping ridge regression, knowledge-leveraged inductive transfer learning for neural networks, fuzzy systems and kernel methods
    • Deng Z., Choi K.S., Jiang Y., Wang S. Generalized hidden-mapping ridge regression, knowledge-leveraged inductive transfer learning for neural networks, fuzzy systems and kernel methods. Knowl. Inf. Syst. 2014, 44(12):2585-2599.
    • (2014) Knowl. Inf. Syst. , vol.44 , Issue.12 , pp. 2585-2599
    • Deng, Z.1    Choi, K.S.2    Jiang, Y.3    Wang, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.