메뉴 건너뛰기




Volumn 44, Issue 12, 2014, Pages 2585-2599

Generalized hidden-mapping ridge regression, knowledge-leveraged inductive transfer learning for neural networks, fuzzy systems and kernel methods

Author keywords

Classification; Fuzzy systems; Generalized hidden mapping ridge regression (GHRR); Inductive transfer learning; Kernel methods; Knowledge leverage; Neural networks; Regression

Indexed keywords

CLASSIFICATION (OF INFORMATION); FUZZY SYSTEMS; KNOWLEDGE MANAGEMENT; LEARNING SYSTEMS; MAPPING; NEURAL NETWORKS; REGRESSION ANALYSIS;

EID: 84911938464     PISSN: 21682267     EISSN: None     Source Type: Journal    
DOI: 10.1109/TCYB.2014.2311014     Document Type: Article
Times cited : (132)

References (49)
  • 1
    • 77956031473 scopus 로고    scopus 로고
    • A survey on transfer learning
    • Oct.
    • S. J. Pan and Q. Yang, "A survey on transfer learning," IEEE Trans. Knowledge Data Eng., vol. 22, no. 10, pp. 1345-1359, Oct. 2010.
    • (2010) IEEE Trans. Knowledge Data Eng. , vol.22 , Issue.10 , pp. 1345-1359
    • Pan, S.J.1    Yang, Q.2
  • 10
    • 66149163084 scopus 로고    scopus 로고
    • Transfer learning by mapping with minimal target data
    • L. Mihalkova and R. J. Mooney, "Transfer learning by mapping with minimal target data," in Proc. AAAI'08, Jul. 2008, pp. 1-5.
    • Proc. AAAI'08, Jul. 2008 , pp. 1-5
    • Mihalkova, L.1    Mooney, R.J.2
  • 12
    • 79951681949 scopus 로고    scopus 로고
    • Domain adaptation via transfer component analysis
    • Feb.
    • S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, "Domain adaptation via transfer component analysis," IEEE Trans. Neural Netw., vol. 22, no. 2, pp. 199-210, Feb. 2011.
    • (2011) IEEE Trans. Neural Netw. , vol.22 , Issue.2 , pp. 199-210
    • Pan, S.J.1    Tsang, I.W.2    Kwok, J.T.3    Yang, Q.4
  • 13
    • 84862192949 scopus 로고    scopus 로고
    • Domain adaptation from multiple sources: A domain-dependent regularization approach
    • Mar.
    • L. X. Duan, D. Xu, and I. W. Tsang, "Domain adaptation from multiple sources: A domain-dependent regularization approach," IEEE Trans. Neural Netw. Learning Syst., vol. 23, no. 3, pp. 504-518, Mar. 2012.
    • (2012) IEEE Trans. Neural Netw. Learning Syst. , vol.23 , Issue.3 , pp. 504-518
    • Duan, L.X.1    Xu, D.2    Tsang, I.W.3
  • 15
    • 33749028480 scopus 로고    scopus 로고
    • Domain adaptation for statistical classifiers
    • May
    • H. DaumKe, III and D. Marcu, "Domain adaptation for statistical classifiers," J. Artif. Intell. Res., vol. 26, no. 1, pp. 101-126, May 2006.
    • (2006) J. Artif. Intell. Res. , vol.26 , Issue.1 , pp. 101-126
    • DaumKe, H.1    Marcu, D.2
  • 18
    • 77954448372 scopus 로고    scopus 로고
    • Regression transfer learning based on principal curve
    • Berlin Heidelberg: Springer
    • W. Mao, G. Yan, J. Bai, and H. Li, "Regression transfer learning based on principal curve," in Lecture Notes on Computer Science, vol. 6063. Berlin Heidelberg: Springer, 2010, pp. 365-372.
    • (2010) Lecture Notes on Computer Science , vol.6063 , pp. 365-372
    • Mao, W.1    Yan, G.2    Bai, J.3    Li, H.4
  • 19
    • 77249170786 scopus 로고    scopus 로고
    • Transfer regression model for indoor 3-D location estimation
    • Berlin Heidelberg: Springer
    • J. Liu, Y. Chen, and Y. Zhang, "Transfer regression model for indoor 3-D location estimation," in Lecture Note on Computer Science, vol. 5916. Berlin Heidelberg: Springer, 2010, pp. 603-613.
    • (2010) Lecture Note on Computer Science , vol.5916 , pp. 603-613
    • Liu, J.1    Chen, Y.2    Zhang, Y.3
  • 24
    • 79953646805 scopus 로고    scopus 로고
    • Scalable TSK fuzzy modeling for very large datasets using minimal-enclosing-ball approximation
    • Apr.
    • Z. H. Deng, K. S. Choi, F. L. Chung, and S. T. Wang, "Scalable TSK fuzzy modeling for very large datasets using minimal-enclosing-ball approximation," IEEE Trans. Fuzzy Syst., vol. 19, no. 2, pp. 210-226, Apr. 2011.
    • (2011) IEEE Trans. Fuzzy Syst. , vol.19 , Issue.2 , pp. 210-226
    • Deng, Z.H.1    Choi, K.S.2    Chung, F.L.3    Wang, S.T.4
  • 31
    • 32044466073 scopus 로고    scopus 로고
    • Markov logic networks
    • M. Richardson and P. Domingos, "Markov logic networks," Mach. Learning, vol. 62, nos. 1-2, pp. 107-136, 2006.
    • (2006) Mach. Learning , vol.62 , Issue.1-2 , pp. 107-136
    • Richardson, M.1    Domingos, P.2
  • 32
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • A. E. Hoerl and R. W. Kennard, "Ridge regression: Biased estimation for nonorthogonal problems," Technometrics, vol. 12, no. 1, pp. 55-67, 1970.
    • (1970) Technometrics , vol.12 , Issue.1 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.W.2
  • 36
    • 84881352584 scopus 로고    scopus 로고
    • Knowledge-leverage based fuzzy system and its modeling
    • Aug.
    • Z. H. Deng, Y. Z. Jiang, F. L. Chung, and S. T. Wang, "Knowledge-leverage based fuzzy system and its modeling," IEEE Trans. Fuzzy Systems, vol. 21, no. 4, pp. 597-609, Aug. 2013.
    • (2013) IEEE Trans. Fuzzy Systems , vol.21 , Issue.4 , pp. 597-609
    • Deng, Z.H.1    Jiang, Y.Z.2    Chung, F.L.3    Wang, S.T.4
  • 37
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • Jul.
    • G.-B. Huang, L. Chen, and C.-K. Siew, "Universal approximation using incremental constructive feedforward networks with random hidden nodes," IEEE Trans. Neural Netw., vol. 17, no. 4, pp. 879-892, Jul. 2006.
    • (2006) IEEE Trans. Neural Netw. , vol.17 , Issue.4 , pp. 879-892
    • Huang, G.-B.1    Chen, L.2    Siew, C.-K.3
  • 38
    • 34548158996 scopus 로고    scopus 로고
    • Convex incremental extreme learning machine
    • Oct.
    • G.-B. Huang and L. Chen, "Convex incremental extreme learning machine," Neurocomputing, vol. 70, nos. 16-18, pp. 3056-3062, Oct. 2007.
    • (2007) Neurocomputing , vol.70 , Issue.16-18 , pp. 3056-3062
    • Huang, G.-B.1    Chen, L.2
  • 39
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its application to modeling and control
    • Jan.-Feb.
    • T. Takagi and M. Sugeno, "Fuzzy identification of systems and its application to modeling and control," IEEE Trans. Syst. Man Cybern., vol. 15, no. 1, pp. 116-132, Jan.-Feb. 1985.
    • (1985) IEEE Trans. Syst. Man Cybern. , vol.15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 40
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function networks
    • Mar.
    • S. Chen, C. F. N. Cowan, and P. M. Grant, "Orthogonal least squares learning algorithm for radial basis function networks," IEEE Trans. Neural Netw., vol. 2, no. 2, pp. 302-309, Mar. 1991.
    • (1991) IEEE Trans. Neural Netw. , vol.2 , Issue.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 41
    • 79953646805 scopus 로고    scopus 로고
    • Scalable TSK fuzzy modeling for very large datasets using minimal-enclosing-ball approximation
    • Apr.
    • Z. H. Deng, K. S. Choi, F. L. Chung, and S. T. Wang, "Scalable TSK fuzzy modeling for very large datasets using minimal-enclosing-ball approximation," IEEE Trans. Fuzzy Syst., vol. 19, no. 2, pp. 210-226, Apr. 2011.
    • (2011) IEEE Trans. Fuzzy Syst. , vol.19 , Issue.2 , pp. 210-226
    • Deng, Z.H.1    Choi, K.S.2    Chung, F.L.3    Wang, S.T.4
  • 42
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Jun.
    • J. A. K. Suykens and J. Vandewalle, "Least squares support vector machine classifiers," Neural Process. Lett., vol. 9, no. 3, pp. 293-300, Jun. 1999.
    • (1999) Neural Process. Lett. , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 44
    • 34249753618 scopus 로고
    • Support vector networks
    • C. Cortes and V. Vapnik, "Support vector networks," Mach. Learning, vol. 20, no. 3, pp. 273-297, 1995.
    • (1995) Mach. Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 48
    • 84862210850 scopus 로고    scopus 로고
    • On minimum distribution discrepancy support vector machine for domain adaptation
    • J. W. Tao, K. F. L. Chung, and S. T. Wang, "On minimum distribution discrepancy support vector machine for domain adaptation," Pattern Recognit., vol. 45, no. 11, pp. 3962-3984, 2012.
    • (2012) Pattern Recognit. , vol.45 , Issue.11 , pp. 3962-3984
    • Tao, J.W.1    Chung, K.F.L.2    Wang, S.T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.