메뉴 건너뛰기




Volumn 113, Issue 4, 2016, Pages E469-E478

Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain

Author keywords

Association cortex; Brain evolution; Corticocortical connectivity; Human transcriptome; Supragranular

Indexed keywords

SYNAPTOBREVIN 1; SYNAPTOTAGMIN II; VOLTAGE GATED SODIUM CHANNEL BETA 3 SUBUNIT; VOLTAGE GATED SODIUM CHANNEL BETA 4 SUBUNIT; MESSENGER RNA; NERVE PROTEIN; TRANSCRIPTOME;

EID: 84955443186     PISSN: 00278424     EISSN: 10916490     Source Type: Journal    
DOI: 10.1073/pnas.1510903113     Document Type: Article
Times cited : (160)

References (77)
  • 2
    • 84865374280 scopus 로고    scopus 로고
    • Human-specific transcriptional networks in the brain
    • Konopka G, et al. (2012) Human-specific transcriptional networks in the brain. Neuron 75(4):601-617.
    • (2012) Neuron , vol.75 , Issue.4 , pp. 601-617
    • Konopka, G.1
  • 3
    • 54949113578 scopus 로고    scopus 로고
    • Functional organization of the transcriptome in human brain
    • Oldham MC, et al. (2008) Functional organization of the transcriptome in human brain. Nat Neurosci 11(11):1271-1282.
    • (2008) Nat Neurosci , vol.11 , Issue.11 , pp. 1271-1282
    • Oldham, M.C.1
  • 4
    • 33846252240 scopus 로고    scopus 로고
    • Genome-wide atlas of gene expression in the adult mouse brain
    • Lein ES, et al. (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445(7124):168-176.
    • (2007) Nature , vol.445 , Issue.7124 , pp. 168-176
    • Lein, E.S.1
  • 5
    • 77955090515 scopus 로고    scopus 로고
    • Both noncoding and protein-coding RNAs contribute to gene expression evolution in the primate brain
    • Babbitt CC, et al. (2010) Both noncoding and protein-coding RNAs contribute to gene expression evolution in the primate brain. Genome Biol Evol 2(0):67-79.
    • (2010) Genome Biol Evol , vol.2 , pp. 67-79
    • Babbitt, C.C.1
  • 6
    • 0242268390 scopus 로고    scopus 로고
    • Elevated gene expression levels distinguish human from nonhuman primate brains
    • Cáceres M, et al. (2003) Elevated gene expression levels distinguish human from nonhuman primate brains. Proc Natl Acad Sci USA 100(22):13030-13035.
    • (2003) Proc Natl Acad Sci USA , vol.100 , Issue.22 , pp. 13030-13035
    • Cáceres, M.1
  • 7
    • 22544477508 scopus 로고    scopus 로고
    • Adult mouse brain gene expression patterns bear an embryologic imprint
    • Zapala MA, et al. (2005) Adult mouse brain gene expression patterns bear an embryologic imprint. Proc Natl Acad Sci USA 102(29):10357-10362.
    • (2005) Proc Natl Acad Sci USA , vol.102 , Issue.29 , pp. 10357-10362
    • Zapala, M.A.1
  • 8
    • 84863338226 scopus 로고    scopus 로고
    • Transcriptional architecture of the primate neocortex
    • Bernard A, et al. (2012) Transcriptional architecture of the primate neocortex. Neuron 73(6):1083-1099.
    • (2012) Neuron , vol.73 , Issue.6 , pp. 1083-1099
    • Bernard, A.1
  • 9
    • 84867934886 scopus 로고    scopus 로고
    • Now that we've got the map, where are we going? Moving from gene candidate lists to function in studies of brain evolution
    • Sherwood CC, Duka T (2012) Now that we've got the map, where are we going? Moving from gene candidate lists to function in studies of brain evolution. Brain Behav Evol 80(3):167-169.
    • (2012) Brain Behav Evol , vol.80 , Issue.3 , pp. 167-169
    • Sherwood, C.C.1    Duka, T.2
  • 10
    • 77955614912 scopus 로고    scopus 로고
    • Similar patterns of cortical expansion during human development and evolution
    • Hill J, et al. (2010) Similar patterns of cortical expansion during human development and evolution. Proc Natl Acad Sci USA 107(29):13135-13140.
    • (2010) Proc Natl Acad Sci USA , vol.107 , Issue.29 , pp. 13135-13140
    • Hill, J.1
  • 11
    • 84888872635 scopus 로고    scopus 로고
    • The evolution of distributed association networks in the human brain
    • Buckner RL, Krienen FM (2013) The evolution of distributed association networks in the human brain. Trends Cogn Sci 17(12):648-665.
    • (2013) Trends Cogn Sci , vol.17 , Issue.12 , pp. 648-665
    • Buckner, R.L.1    Krienen, F.M.2
  • 12
    • 0030866005 scopus 로고    scopus 로고
    • Topographic maps are fundamental to sensory processing
    • Kaas JH (1997) Topographic maps are fundamental to sensory processing. Brain Res Bull 44(2):107-112.
    • (1997) Brain Res Bull , vol.44 , Issue.2 , pp. 107-112
    • Kaas, J.H.1
  • 13
    • 77954651310 scopus 로고    scopus 로고
    • The organization of local and distant functional connectivity in the human brain
    • Sepulcre J, et al. (2010) The organization of local and distant functional connectivity in the human brain. PLOS Comput Biol 6(6):e1000808.
    • (2010) PLOS Comput Biol , vol.6 , Issue.6
    • Sepulcre, J.1
  • 14
    • 84875517090 scopus 로고    scopus 로고
    • The role of long-range connections on the specificity of the macaque interareal cortical network
    • Markov NT, et al. (2013) The role of long-range connections on the specificity of the macaque interareal cortical network. Proc Natl Acad Sci USA 110(13):5187-5192.
    • (2013) Proc Natl Acad Sci USA , vol.110 , Issue.13 , pp. 5187-5192
    • Markov, N.T.1
  • 15
    • 84886995100 scopus 로고    scopus 로고
    • Cortical high-density counterstream architectures
    • Markov NT, et al. (2013) Cortical high-density counterstream architectures. Science 342(6158):1238406.
    • (2013) Science , vol.342 , Issue.6158
    • Markov, N.T.1
  • 16
    • 33947194494 scopus 로고    scopus 로고
    • Cortical Areas: Unity and Diversity, eds Schütz A, Miller R (CRC Press, Boca Raton, FL)
    • Kaas J (2002) Cortical areas and patterns of cortico-cortical connections. Cortical Areas: Unity and Diversity, eds Schütz A, Miller R (CRC Press, Boca Raton, FL), pp 179-191.
    • (2002) Cortical Areas and Patterns of Cortico-cortical Connections , pp. 179-191
    • Kaas, J.1
  • 17
    • 45849101735 scopus 로고    scopus 로고
    • A natural history of the human mind: Tracing evolutionary changes in brain and cognition
    • Sherwood CC, Subiaul F, Zawidzki TW (2008) A natural history of the human mind: Tracing evolutionary changes in brain and cognition. J Anat 212(4):426-454.
    • (2008) J Anat , vol.212 , Issue.4 , pp. 426-454
    • Sherwood, C.C.1    Subiaul, F.2    Zawidzki, T.W.3
  • 18
    • 84859744583 scopus 로고    scopus 로고
    • Large-scale cellular-resolution gene profiling in human neocortex reveals species-specific molecular signatures
    • Zeng H, et al. (2012) Large-scale cellular-resolution gene profiling in human neocortex reveals species-specific molecular signatures. Cell 149(2):483-496.
    • (2012) Cell , vol.149 , Issue.2 , pp. 483-496
    • Zeng, H.1
  • 19
    • 0026710246 scopus 로고
    • Ontogenesis of the pyramidal cell of the mammalian neocortex and developmental cytoarchitectonics: A unifying theory
    • Marín-Padilla M (1992) Ontogenesis of the pyramidal cell of the mammalian neocortex and developmental cytoarchitectonics: A unifying theory. J Comp Neurol 321(2):223-240.
    • (1992) J Comp Neurol , vol.321 , Issue.2 , pp. 223-240
    • Marín-Padilla, M.1
  • 20
    • 23744472001 scopus 로고    scopus 로고
    • Comparative analysis of cortical layering and supragranular layer enlargement in rodent carnivore and primate species
    • Hutsler JJ, Lee D-G, Porter KK (2005) Comparative analysis of cortical layering and supragranular layer enlargement in rodent carnivore and primate species. Brain Res 1052(1):71-81.
    • (2005) Brain Res , vol.1052 , Issue.1 , pp. 71-81
    • Hutsler, J.J.1    Lee, D.-G.2    Porter, K.K.3
  • 21
    • 0035461229 scopus 로고    scopus 로고
    • The pyramidal cell in cognition: A comparative study in human and monkey
    • Elston GN, Benavides-Piccione R, DeFelipe J (2001) The pyramidal cell in cognition: A comparative study in human and monkey. J Neurosci 21(17):RC163.
    • (2001) J Neurosci , vol.21 , Issue.17 , pp. RC163
    • Elston, G.N.1    Benavides-Piccione, R.2    DeFelipe, J.3
  • 22
    • 80051995858 scopus 로고    scopus 로고
    • Extraordinary neoteny of synaptic spines in the human prefrontal cortex
    • Petanjek Z, et al. (2011) Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proc Natl Acad Sci USA 108(32):13281-13286.
    • (2011) Proc Natl Acad Sci USA , vol.108 , Issue.32 , pp. 13281-13286
    • Petanjek, Z.1
  • 23
    • 84887900487 scopus 로고    scopus 로고
    • Dendritic morphology of pyramidal neurons in the chimpanzee neocortex: Regional specializations and comparison to humans
    • Bianchi S, et al. (2013) Dendritic morphology of pyramidal neurons in the chimpanzee neocortex: Regional specializations and comparison to humans. Cereb Cortex 23(10): 2429-2436.
    • (2013) Cereb Cortex , vol.23 , Issue.10 , pp. 2429-2436
    • Bianchi, S.1
  • 24
    • 79958167043 scopus 로고    scopus 로고
    • Gene expression in the rodent brain is associated with its regional connectivity
    • Wolf L, Goldberg C, Manor N, Sharan R, Ruppin E (2011) Gene expression in the rodent brain is associated with its regional connectivity. PLOS Comput Biol 7(5): e1002040.
    • (2011) PLOS Comput Biol , vol.7 , Issue.5
    • Wolf, L.1    Goldberg, C.2    Manor, N.3    Sharan, R.4    Ruppin, E.5
  • 25
    • 84931292222 scopus 로고    scopus 로고
    • BRAIN NETWORKS. Correlated gene expression supports synchronous activity in brain networks
    • Richiardi J, et al.; IMAGEN consortium (2015) BRAIN NETWORKS. Correlated gene expression supports synchronous activity in brain networks. Science 348(6240): 1241-1244.
    • (2015) Science , vol.348 , Issue.6240 , pp. 1241-1244
    • Richiardi, J.1
  • 26
    • 80755128040 scopus 로고    scopus 로고
    • The restless brain
    • Raichle ME (2011) The restless brain. Brain Connect 1(1):3-12.
    • (2011) Brain Connect , vol.1 , Issue.1 , pp. 3-12
    • Raichle, M.E.1
  • 27
    • 84879628020 scopus 로고    scopus 로고
    • Opportunities and limitations of intrinsic functional connectivity MRI
    • Buckner RL, Krienen FM, Yeo BTT (2013) Opportunities and limitations of intrinsic functional connectivity MRI. Nat Neurosci 16(7):832-837.
    • (2013) Nat Neurosci , vol.16 , Issue.7 , pp. 832-837
    • Buckner, R.L.1    Krienen, F.M.2    Yeo, B.T.T.3
  • 28
    • 34247578209 scopus 로고    scopus 로고
    • Intrinsic functional architecture in the anaesthetized monkey brain
    • Vincent JL, et al. (2007) Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447(7140):83-86.
    • (2007) Nature , vol.447 , Issue.7140 , pp. 83-86
    • Vincent, J.L.1
  • 29
    • 73949106755 scopus 로고    scopus 로고
    • Precuneus shares intrinsic functional architecture in humans and monkeys
    • Margulies DS, et al. (2009) Precuneus shares intrinsic functional architecture in humans and monkeys. Proc Natl Acad Sci USA 106(47):20069-20074.
    • (2009) Proc Natl Acad Sci USA , vol.106 , Issue.47 , pp. 20069-20074
    • Margulies, D.S.1
  • 30
    • 84885446065 scopus 로고    scopus 로고
    • Distinct parietal and temporal connectivity profiles of ventrolateral frontal areas involved in language production
    • Margulies DS, Petrides M (2013) Distinct parietal and temporal connectivity profiles of ventrolateral frontal areas involved in language production. J Neurosci 33(42): 16846-16852.
    • (2013) J Neurosci , vol.33 , Issue.42 , pp. 16846-16852
    • Margulies, D.S.1    Petrides, M.2
  • 31
    • 80052566098 scopus 로고    scopus 로고
    • The organization of the human cerebral cortex estimated by intrinsic functional connectivity
    • Yeo BTT, et al. (2011) The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 106(3):1125-1165.
    • (2011) J Neurophysiol , vol.106 , Issue.3 , pp. 1125-1165
    • Yeo, B.T.T.1
  • 32
    • 84860521318 scopus 로고    scopus 로고
    • Functional connectivity of the frontal eye fields in humans and macaque monkeys investigated with resting-state fMRI
    • Hutchison RM, et al. (2012) Functional connectivity of the frontal eye fields in humans and macaque monkeys investigated with resting-state fMRI. J Neurophysiol 107(9): 2463-2474.
    • (2012) J Neurophysiol , vol.107 , Issue.9 , pp. 2463-2474
    • Hutchison, R.M.1
  • 33
    • 84867708970 scopus 로고    scopus 로고
    • The organization of the human striatum estimated by intrinsic functional connectivity
    • Choi EY, Yeo BTT, Buckner RL (2012) The organization of the human striatum estimated by intrinsic functional connectivity. J Neurophysiol 108(8):2242-2263.
    • (2012) J Neurophysiol , vol.108 , Issue.8 , pp. 2242-2263
    • Choi, E.Y.1    Yeo, B.T.T.2    Buckner, R.L.3
  • 34
    • 84866518216 scopus 로고    scopus 로고
    • An anatomically comprehensive atlas of the adult human brain transcriptome
    • Hawrylycz MJ, et al. (2012) An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489(7416):391-399.
    • (2012) Nature , vol.489 , Issue.7416 , pp. 391-399
    • Hawrylycz, M.J.1
  • 35
    • 77957324650 scopus 로고    scopus 로고
    • Network-based statistic: Identifying differences in brain networks
    • Zalesky A, Fornito A, Bullmore ET (2010) Network-based statistic: identifying differences in brain networks. Neuroimage 53(4):1197-1207.
    • (2010) Neuroimage , vol.53 , Issue.4 , pp. 1197-1207
    • Zalesky, A.1    Fornito, A.2    Bullmore, E.T.3
  • 36
    • 19344372220 scopus 로고    scopus 로고
    • A neutral model of transcriptome evolution
    • Khaitovich P, et al. (2004) A neutral model of transcriptome evolution. PLoS Biol 2(5): 682-689.
    • (2004) PLoS Biol , vol.2 , Issue.5 , pp. 682-689
    • Khaitovich, P.1
  • 37
    • 33645982900 scopus 로고    scopus 로고
    • Neocortical areas, layers, connections, and gene expression
    • Yamamori T, Rockland KS (2006) Neocortical areas, layers, connections, and gene expression. Neurosci Res 55(1):11-27.
    • (2006) Neurosci Res , vol.55 , Issue.1 , pp. 11-27
    • Yamamori, T.1    Rockland, K.S.2
  • 38
    • 84890545141 scopus 로고    scopus 로고
    • A weighted and directed interareal connectivity matrix for macaque cerebral cortex
    • Markov NT, et al. (2014) A weighted and directed interareal connectivity matrix for macaque cerebral cortex. Cereb Cortex 24(1):17-36.
    • (2014) Cereb Cortex , vol.24 , Issue.1 , pp. 17-36
    • Markov, N.T.1
  • 39
    • 0014890004 scopus 로고
    • An anatomical study of converging sensory pathways within the cerebral cortex of the monkey
    • Jones EG, Powell TP (1970) An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93(4):793-820.
    • (1970) Brain , vol.93 , Issue.4 , pp. 793-820
    • Jones, E.G.1    Powell, T.P.2
  • 40
    • 0014491084 scopus 로고
    • Cortico-cortical connections in the rhesus monkey
    • Pandya DN, Kuypers HG (1969) Cortico-cortical connections in the rhesus monkey. Brain Res 13(1):13-36.
    • (1969) Brain Res , vol.13 , Issue.1 , pp. 13-36
    • Pandya, D.N.1    Kuypers, H.G.2
  • 41
    • 0023781837 scopus 로고
    • Topography of cognition: Parallel distributed networks in primate association cortex
    • Goldman-Rakic PS (1988) Topography of cognition: Parallel distributed networks in primate association cortex. Annu Rev Neurosci 11(1):137-156.
    • (1988) Annu Rev Neurosci , vol.11 , Issue.1 , pp. 137-156
    • Goldman-Rakic, P.S.1
  • 42
    • 0025029346 scopus 로고
    • Large-scale neurocognitive networks and distributed processing for attention, language, and memory
    • Mesulam MM (1990) Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann Neurol 28(5):597-613.
    • (1990) Ann Neurol , vol.28 , Issue.5 , pp. 597-613
    • Mesulam, M.M.1
  • 43
    • 0021024654 scopus 로고
    • The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey
    • Maunsell JH, van Essen DC (1983) The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. J Neurosci 3(12):2563-2586.
    • (1983) J Neurosci , vol.3 , Issue.12 , pp. 2563-2586
    • Maunsell, J.H.1    Van Essen, D.C.2
  • 44
    • 0034796381 scopus 로고    scopus 로고
    • Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey
    • Shadlen MN, Newsome WT (2001) Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J Neurophysiol 86(4):1916-1936.
    • (2001) J Neurophysiol , vol.86 , Issue.4 , pp. 1916-1936
    • Shadlen, M.N.1    Newsome, W.T.2
  • 45
    • 84859040924 scopus 로고    scopus 로고
    • Network analysis of corticocortical connections reveals ventral and dorsal processing streams in mouse visual cortex
    • Wang Q, Sporns O, Burkhalter A (2012) Network analysis of corticocortical connections reveals ventral and dorsal processing streams in mouse visual cortex. J Neurosci 32(13):4386-4399.
    • (2012) J Neurosci , vol.32 , Issue.13 , pp. 4386-4399
    • Wang, Q.1    Sporns, O.2    Burkhalter, A.3
  • 47
    • 84875848115 scopus 로고    scopus 로고
    • Control-related systems in the human brain
    • Power JD, Petersen SE (2013) Control-related systems in the human brain. Curr Opin Neurobiol 23(2):223-228.
    • (2013) Curr Opin Neurobiol , vol.23 , Issue.2 , pp. 223-228
    • Power, J.D.1    Petersen, S.E.2
  • 48
    • 57449106343 scopus 로고    scopus 로고
    • Evidence for a frontoparietal control system revealed by intrinsic functional connectivity
    • Vincent JL, Kahn I, Snyder AZ, Raichle ME, Buckner RL (2008) Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. J Neurophysiol 100(6):3328-3342.
    • (2008) J Neurophysiol , vol.100 , Issue.6 , pp. 3328-3342
    • Vincent, J.L.1    Kahn, I.2    Snyder, A.Z.3    Raichle, M.E.4    Buckner, R.L.5
  • 49
    • 0024845028 scopus 로고
    • Why does the brain have so many visual areas?
    • Kaas JH (1989) Why does the brain have so many visual areas? J Cogn Neurosci 1(2): 121-135.
    • (1989) J Cogn Neurosci , vol.1 , Issue.2 , pp. 121-135
    • Kaas, J.H.1
  • 50
    • 0025718412 scopus 로고
    • Distributed hierarchical processing in the primate cerebral cortex
    • Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1(1):1-47.
    • (1991) Cereb Cortex , vol.1 , Issue.1 , pp. 1-47
    • Felleman, D.J.1    Van Essen, D.C.2
  • 52
    • 0035798089 scopus 로고    scopus 로고
    • Neocortex patterning by the secreted signaling molecule FGF8
    • Fukuchi-Shimogori T, Grove EA (2001) Neocortex patterning by the secreted signaling molecule FGF8. Science 294(5544):1071-1074.
    • (2001) Science , vol.294 , Issue.5544 , pp. 1071-1074
    • Fukuchi-Shimogori, T.1    Grove, E.A.2
  • 53
    • 45049086433 scopus 로고    scopus 로고
    • Genetic regulation of arealization of the neocortex
    • O'Leary DD, Sahara S (2008) Genetic regulation of arealization of the neocortex. Curr Opin Neurobiol 18(1):90-100.
    • (2008) Curr Opin Neurobiol , vol.18 , Issue.1 , pp. 90-100
    • O'Leary, D.D.1    Sahara, S.2
  • 54
    • 81355153892 scopus 로고    scopus 로고
    • Genetic influences on cortical regionalization in the human brain
    • Chen C-H, et al. (2011) Genetic influences on cortical regionalization in the human brain. Neuron 72(4):537-544.
    • (2011) Neuron , vol.72 , Issue.4 , pp. 537-544
    • Chen, C.-H.1
  • 55
    • 84859148727 scopus 로고    scopus 로고
    • Hierarchical genetic organization of human cortical surface area
    • Chen C-H, et al. (2012) Hierarchical genetic organization of human cortical surface area. Science 335(6076):1634-1636.
    • (2012) Science , vol.335 , Issue.6076 , pp. 1634-1636
    • Chen, C.-H.1
  • 56
    • 0028868528 scopus 로고
    • Neurochemical phenotype of corticocortical connections in the macaque monkey: Quantitative analysis of a subset of neurofilament protein-immunoreactive projection neurons in frontal, parietal, temporal, and cingulate cortices
    • Hof PR, Nimchinsky EA, Morrison JH (1995) Neurochemical phenotype of corticocortical connections in the macaque monkey: Quantitative analysis of a subset of neurofilament protein-immunoreactive projection neurons in frontal, parietal, temporal, and cingulate cortices. J Comp Neurol 362(1):109-133.
    • (1995) J Comp Neurol , vol.362 , Issue.1 , pp. 109-133
    • Hof, P.R.1    Nimchinsky, E.A.2    Morrison, J.H.3
  • 57
    • 0028957486 scopus 로고
    • Neurofilament protein defines regional patterns of cortical organization in the macaque monkey visual system: A quantitative immunohistochemical analysis
    • Hof PR, Morrison JH (1995) Neurofilament protein defines regional patterns of cortical organization in the macaque monkey visual system: A quantitative immunohistochemical analysis. J Comp Neurol 352(2):161-186.
    • (1995) J Comp Neurol , vol.352 , Issue.2 , pp. 161-186
    • Hof, P.R.1    Morrison, J.H.2
  • 58
    • 79952313703 scopus 로고    scopus 로고
    • Lipid classes and fatty acid patterns are altered in the brain of γ-synuclein null mutant mice
    • Guschina I, et al. (2011) Lipid classes and fatty acid patterns are altered in the brain of γ-synuclein null mutant mice. Lipids 46(2):121-130.
    • (2011) Lipids , vol.46 , Issue.2 , pp. 121-130
    • Guschina, I.1
  • 59
    • 0032102455 scopus 로고    scopus 로고
    • The synucleins: A family of proteins involved in synaptic function, plasticity, neurodegeneration and disease
    • Clayton DF, George JM (1998) The synucleins: A family of proteins involved in synaptic function, plasticity, neurodegeneration and disease. Trends Neurosci 21(6):249-254.
    • (1998) Trends Neurosci , vol.21 , Issue.6 , pp. 249-254
    • Clayton, D.F.1    George, J.M.2
  • 60
    • 78650431984 scopus 로고    scopus 로고
    • αβγ-Synuclein triple knockout mice reveal agedependent neuronal dysfunction
    • Greten-Harrison B, et al. (2010) αβγ-Synuclein triple knockout mice reveal agedependent neuronal dysfunction. Proc Natl Acad Sci USA 107(45):19573-19578.
    • (2010) Proc Natl Acad Sci USA , vol.107 , Issue.45 , pp. 19573-19578
    • Greten-Harrison, B.1
  • 61
    • 0034877473 scopus 로고    scopus 로고
    • Gamma synuclein: Subcellular localization in neuronal and non-neuronal cells and effect on signal transduction
    • Surguchov A, Palazzo RE, Surgucheva I (2001) Gamma synuclein: Subcellular localization in neuronal and non-neuronal cells and effect on signal transduction. Cell Motil Cytoskeleton 49(4):218-228.
    • (2001) Cell Motil Cytoskeleton , vol.49 , Issue.4 , pp. 218-228
    • Surguchov, A.1    Palazzo, R.E.2    Surgucheva, I.3
  • 62
    • 84899532964 scopus 로고    scopus 로고
    • Collagen VI regulates peripheral nerve myelination and function
    • Chen P, Cescon M, Megighian A, Bonaldo P (2014) Collagen VI regulates peripheral nerve myelination and function. FASEB J 28(3):1145-1156.
    • (2014) FASEB J , vol.28 , Issue.3 , pp. 1145-1156
    • Chen, P.1    Cescon, M.2    Megighian, A.3    Bonaldo, P.4
  • 63
    • 84921353968 scopus 로고    scopus 로고
    • Anterograde C1ql1 signaling is required in order to determine and maintain a single-winner climbing fiber in the mouse cerebellum
    • Kakegawa W, et al. (2015) Anterograde C1ql1 signaling is required in order to determine and maintain a single-winner climbing fiber in the mouse cerebellum. Neuron 85(2):316-329.
    • (2015) Neuron , vol.85 , Issue.2 , pp. 316-329
    • Kakegawa, W.1
  • 64
    • 36849076770 scopus 로고    scopus 로고
    • The classical complement cascade mediates CNS synapse elimination
    • Stevens B, et al. (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131(6):1164-1178.
    • (2007) Cell , vol.131 , Issue.6 , pp. 1164-1178
    • Stevens, B.1
  • 65
    • 84864317914 scopus 로고    scopus 로고
    • Prox1 postmitotically defines dentate gyrus cells by specifying granule cell identity over CA3 pyramidal cell fate in the hippocampus
    • Iwano T, Masuda A, Kiyonari H, Enomoto H, Matsuzaki F (2012) Prox1 postmitotically defines dentate gyrus cells by specifying granule cell identity over CA3 pyramidal cell fate in the hippocampus. Development 139(16):3051-3062.
    • (2012) Development , vol.139 , Issue.16 , pp. 3051-3062
    • Iwano, T.1    Masuda, A.2    Kiyonari, H.3    Enomoto, H.4    Matsuzaki, F.5
  • 66
    • 52449134616 scopus 로고    scopus 로고
    • CART peptides: Regulators of body weight, reward and other functions
    • Rogge G, Jones D, Hubert GW, Lin Y, Kuhar MJ (2008) CART peptides: Regulators of body weight, reward and other functions. Nat Rev Neurosci 9(10):747-758.
    • (2008) Nat Rev Neurosci , vol.9 , Issue.10 , pp. 747-758
    • Rogge, G.1    Jones, D.2    Hubert, G.W.3    Lin, Y.4    Kuhar, M.J.5
  • 67
    • 23044456701 scopus 로고    scopus 로고
    • The evolution of the neocortex in mammals: How is phenotypic diversity generated?
    • Krubitzer L, Kaas J (2005) The evolution of the neocortex in mammals: How is phenotypic diversity generated? Curr Opin Neurobiol 15(4):444-453.
    • (2005) Curr Opin Neurobiol , vol.15 , Issue.4 , pp. 444-453
    • Krubitzer, L.1    Kaas, J.2
  • 68
    • 84867356067 scopus 로고    scopus 로고
    • Prolonged myelination in human neocortical evolution
    • Miller DJD, et al. (2012) Prolonged myelination in human neocortical evolution. Proc Natl Acad Sci USA 109(41):16480-16485.
    • (2012) Proc Natl Acad Sci USA , vol.109 , Issue.41 , pp. 16480-16485
    • Miller, D.J.D.1
  • 69
    • 84948784579 scopus 로고    scopus 로고
    • Canonical genetic signatures of the adult human brain
    • Hawrylycz M, et al. (2015) Canonical genetic signatures of the adult human brain. Nat Neurosci, 10.1038/nn.4171.
    • (2015) Nat Neurosci
    • Hawrylycz, M.1
  • 70
    • 84955469070 scopus 로고    scopus 로고
    • Correspondence between resting-state activity and brain gene expression
    • Wang G-Z, et al. (2015) Correspondence between resting-state activity and brain gene expression. Neuron 88(4):659-666.
    • (2015) Neuron , vol.88 , Issue.4 , pp. 659-666
    • Wang, G.-Z.1
  • 71
    • 84949209124 scopus 로고    scopus 로고
    • Brain Genomics Superstruct Project initial data release with structural, functional, and behavioral measures
    • Holmes AJ, et al. (2015) Brain Genomics Superstruct Project initial data release with structural, functional, and behavioral measures. Sci Data 2:150031.
    • (2015) Sci Data , vol.2
    • Holmes, A.J.1
  • 72
    • 81355153871 scopus 로고    scopus 로고
    • Functional network organization of the human brain
    • Power JD, et al. (2011) Functional network organization of the human brain. Neuron 72(4):665-678.
    • (2011) Neuron , vol.72 , Issue.4 , pp. 665-678
    • Power, J.D.1
  • 73
    • 77249084595 scopus 로고    scopus 로고
    • Discovering structure in the space of fMRI selectivity profiles
    • Lashkari D, Vul E, Kanwisher N, Golland P (2010) Discovering structure in the space of fMRI selectivity profiles. Neuroimage 50(3):1085-1098.
    • (2010) Neuroimage , vol.50 , Issue.3 , pp. 1085-1098
    • Lashkari, D.1    Vul, E.2    Kanwisher, N.3    Golland, P.4
  • 74
    • 84893824965 scopus 로고    scopus 로고
    • Disruption of cortical association networks in schizophrenia and psychotic bipolar disorder
    • Baker JT, et al. (2014) Disruption of cortical association networks in schizophrenia and psychotic bipolar disorder. JAMA Psychiatry 71(2):109-118.
    • (2014) JAMA Psychiatry , vol.71 , Issue.2 , pp. 109-118
    • Baker, J.T.1
  • 75
    • 84906860651 scopus 로고    scopus 로고
    • Reconfigurable task-dependent functional coupling modes cluster around a core functional architecture
    • Krienen FM, Yeo BTT, Buckner RL (2014) Reconfigurable task-dependent functional coupling modes cluster around a core functional architecture. Philos Trans R Soc Lond B Biol Sci 369(1653):20130526.
    • (2014) Philos Trans R Soc Lond B Biol Sci , vol.369 , Issue.1653
    • Krienen, F.M.1    Yeo, B.T.T.2    Buckner, R.L.3
  • 76
    • 84923294813 scopus 로고    scopus 로고
    • Functional connectivity during rested wakefulness predicts vulnerability to sleep deprivation
    • Yeo BTT, Tandi J, Chee MWL (2015) Functional connectivity during rested wakefulness predicts vulnerability to sleep deprivation. Neuroimage 111(C):147-158.
    • (2015) Neuroimage , vol.111 C , pp. 147-158
    • Yeo, B.T.T.1    Tandi, J.2    Chee, M.W.L.3
  • 77
    • 7644220327 scopus 로고    scopus 로고
    • Evolution of somatosensory and motor cortex in primates
    • Kaas JH (2004) Evolution of somatosensory and motor cortex in primates. Anat Rec A Discov Mol Cell Evol Biol 281(1):1148-1156.
    • (2004) Anat Rec A Discov Mol Cell Evol Biol , vol.281 , Issue.1 , pp. 1148-1156
    • Kaas, J.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.