-
1
-
-
84889843868
-
Learning with submodular functions: A convex optimization perspective
-
F. Bach. Learning with submodular functions: A convex optimization perspective. Foundations and Trends in Machine Learning, 6(2-3):145-373, 2013.
-
(2013)
Foundations and Trends in Machine Learning
, vol.6
, Issue.2-3
, pp. 145-373
-
-
Bach, F.1
-
4
-
-
0032626544
-
Improved particle filter for nonlinear problems
-
J. Carpenter, P. Clifford, and P. Fearnhead. Improved particle filter for nonlinear problems. IEE Proceedings Radar, Sonar and Navigation, 146(1):2-7, 1999.
-
(1999)
IEE Proceedings Radar, Sonar and Navigation
, vol.146
, Issue.1
, pp. 2-7
-
-
Carpenter, J.1
Clifford, P.2
Fearnhead, P.3
-
6
-
-
84903946744
-
Long-term stability of sequential Monte Carlo methods under verifiable conditions
-
R. Douc, E. Moulines, and J. Olsson. Long-term stability of sequential Monte Carlo methods under verifiable conditions. Annals of Applied Probability, 24 (5):1767-1802, 2014.
-
(2014)
Annals of Applied Probability
, vol.24
, Issue.5
, pp. 1767-1802
-
-
Douc, R.1
Moulines, E.2
Olsson, J.3
-
7
-
-
77951131231
-
A tutorial on particle filtering and smoothing: Fifteen years later
-
D. Crisan and B. Rozovsky, editors. Oxford University Press
-
A. Doucet and A. Johansen. A tutorial on particle filtering and smoothing: Fifteen years later. In D. Crisan and B. Rozovsky, editors, The Oxford Handbook of Nonlinear Filtering. Oxford University Press, 2011.
-
(2011)
The Oxford Handbook of Nonlinear Filtering
-
-
Doucet, A.1
Johansen, A.2
-
8
-
-
0001460136
-
On sequential monte carlo sampling methods for Bayesian filtering
-
A. Doucet, S. J. Godsill, and C. Andrieu. On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing, 10(3):197-208, 2000.
-
(2000)
Statistics and Computing
, vol.10
, Issue.3
, pp. 197-208
-
-
Doucet, A.1
Godsill, S.J.2
Andrieu, C.3
-
9
-
-
0142115492
-
Convergence rates for conditional gradient sequences generated by implicit step length rules
-
J. C. Dunn. Convergence rates for conditional gradient sequences generated by implicit step length rules. SIAM Journal on Control and Optimization, 18:473-487, 1980.
-
(1980)
SIAM Journal on Control and Optimization
, vol.18
, pp. 473-487
-
-
Dunn, J.C.1
-
10
-
-
29544444487
-
Using random quasi-Monte-Carlo within particle filters, with application to financial time series
-
P. Fearnhead. Using random quasi-Monte-Carlo within particle filters, with application to financial time series. Journal ofComputational and Graphical Statistics, 14(4):751-769, 2005.
-
(2005)
Journal OfComputational and Graphical Statistics
, vol.14
, Issue.4
, pp. 751-769
-
-
Fearnhead, P.1
-
13
-
-
0027580559
-
Novel approach to nonlinear/non-Gaussian Bayesian state estimation
-
Apr
-
N. J. Gordon, D. J. Salmond, and A. F. M. Smith. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. Radar and Signal Processing, IEE Proceedings F, 140(2):107-113, Apr. 1993.
-
(1993)
Radar and Signal Processing, IEE Proceedings F
, vol.140
, Issue.2
, pp. 107-113
-
-
Gordon, N.J.1
Salmond, D.J.2
Smith, A.F.M.3
-
14
-
-
84859477054
-
A kernel two-sample test
-
A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Scholkopf, and A. Smola. A kernel two-sample test. The Journal of Machine Learning Research, 13:723-773, 2012.
-
(2012)
The Journal of Machine Learning Research
, vol.13
, pp. 723-773
-
-
Gretton, A.1
Borgwardt, K.M.2
Rasch, M.J.3
Scholkopf, B.4
Smola, A.5
-
20
-
-
3242789232
-
-
Artech House, London, UK
-
B. Ristic, S. Arulampalam, and N. Gordon. Beyond the Kalman filter: particle filters for tracking applications. Artech House, London, UK, 2004.
-
(2004)
Beyond the Kalman Filter: Particle Filters for Tracking Applications
-
-
Ristic, B.1
Arulampalam, S.2
Gordon, N.3
-
21
-
-
38149136576
-
A Hilbert space embedding for distributions
-
Springer
-
A. Smola, A. Gretton, L. Song, and B. Schoolkopf. A Hilbert space embedding for distributions. In Algorithmic Learning Theory, pages 13-31. Springer, 2007.
-
(2007)
Algorithmic Learning Theory
, pp. 13-31
-
-
Smola, A.1
Gretton, A.2
Song, L.3
Schoolkopf, B.4
-
22
-
-
77951953755
-
Hilbert space em-beddings and metrics on probability measures
-
B. K. Sriperumbudur, A. Gretton, K. Fukumizu, B. Schoolkopf, and G. R. Lanckriet. Hilbert space em-beddings and metrics on probability measures. The Journal of Machine Learning Research, 99:1517-1561, 2010.
-
(2010)
The Journal of Machine Learning Research
, vol.99
, pp. 1517-1561
-
-
Sriperumbudur, B.K.1
Gretton, A.2
Fukumizu, K.3
Schoolkopf, B.4
Lanckriet, G.R.5
-
23
-
-
68149103321
-
Particle filter SLAM with high dimensional vehicle model
-
D. Toornqvist, T. B. Schoon, R. Karlsson, and F. Gustafsson. Particle filter SLAM with high dimensional vehicle model. Journal of Intelligent and Robotic Systems, 55(4):249-266, 2009.
-
(2009)
Journal of Intelligent and Robotic Systems
, vol.55
, Issue.4
, pp. 249-266
-
-
Toornqvist, D.1
Schoon, T.B.2
Karlsson, R.3
Gustafsson, F.4
|