-
1
-
-
84858976028
-
Functionalized nanostructures with application in regenerative medicine
-
[1] Peran, M., et al. Functionalized nanostructures with application in regenerative medicine. Int. J. Mol. Sci. 13 (2012), 3847–3886.
-
(2012)
Int. J. Mol. Sci.
, vol.13
, pp. 3847-3886
-
-
Peran, M.1
-
2
-
-
84870330878
-
Nanoparticles and their potential for application in bone
-
[2] Tautzenberger, A., Kovtun, A., Ignatius, A., Nanoparticles and their potential for application in bone. Int. J. Nanomed. 7 (2012), 4545–4557.
-
(2012)
Int. J. Nanomed.
, vol.7
, pp. 4545-4557
-
-
Tautzenberger, A.1
Kovtun, A.2
Ignatius, A.3
-
3
-
-
84655161951
-
Advances in bone repair with nanobiomaterials: mini-review
-
[3] Zhang, Z.G., et al. Advances in bone repair with nanobiomaterials: mini-review. Cytotechnology 63 (2011), 437–443.
-
(2011)
Cytotechnology
, vol.63
, pp. 437-443
-
-
Zhang, Z.G.1
-
4
-
-
36249006538
-
A triphasic ceramic-coated porous hydroxyapatite for tissue engineering application
-
[4] Nair, M.B., et al. A triphasic ceramic-coated porous hydroxyapatite for tissue engineering application. Acta Biomater. 4 (2008), 173–181.
-
(2008)
Acta Biomater.
, vol.4
, pp. 173-181
-
-
Nair, M.B.1
-
5
-
-
0038143185
-
Nanotechnology: convergence with modern biology and medicine
-
[5] Roco, M.C., Nanotechnology: convergence with modern biology and medicine. Curr. Opin. Biotechnol. 14 (2003), 337–346.
-
(2003)
Curr. Opin. Biotechnol.
, vol.14
, pp. 337-346
-
-
Roco, M.C.1
-
6
-
-
34547866713
-
Finding fluorescent needles in the cardiac haystack: tracking human mesenchymal stem cells labeled with quantum dots for quantitative in vivo three-dimensional fluorescence analysis
-
[6] Rosen, A.B., et al. Finding fluorescent needles in the cardiac haystack: tracking human mesenchymal stem cells labeled with quantum dots for quantitative in vivo three-dimensional fluorescence analysis. Stem Cells 25 (2007), 2128–2138.
-
(2007)
Stem Cells
, vol.25
, pp. 2128-2138
-
-
Rosen, A.B.1
-
7
-
-
84859811743
-
Towards whole-body imaging at the single cell level using ultra-sensitive stem cell labeling with oligo-arginine modified upconversion nanoparticles
-
[7] Wang, C., et al. Towards whole-body imaging at the single cell level using ultra-sensitive stem cell labeling with oligo-arginine modified upconversion nanoparticles. Biomaterials 33 (2012), 4872–4881.
-
(2012)
Biomaterials
, vol.33
, pp. 4872-4881
-
-
Wang, C.1
-
8
-
-
78649616737
-
Gold nanoparticles promote osteogenic differentiation of mesenchymal stem cells through p38 MAPK pathway
-
[8] Yi, C., et al. Gold nanoparticles promote osteogenic differentiation of mesenchymal stem cells through p38 MAPK pathway. ACS Nano 4 (2010), 6439–6448.
-
(2010)
ACS Nano
, vol.4
, pp. 6439-6448
-
-
Yi, C.1
-
9
-
-
84879409298
-
Multifaceted applications of nanomaterials in cell engineering and therapy
-
[9] Chen, H., et al. Multifaceted applications of nanomaterials in cell engineering and therapy. Biotechnol. Adv. 31 (2013), 638–653.
-
(2013)
Biotechnol. Adv.
, vol.31
, pp. 638-653
-
-
Chen, H.1
-
10
-
-
84943188600
-
Quantitative phenotyping of bone fracture repair: a review
-
[10] Casanova, M., et al. Quantitative phenotyping of bone fracture repair: a review. Bonekey Rep., 3, 2014, 550.
-
(2014)
Bonekey Rep.
, vol.3
, pp. 550
-
-
Casanova, M.1
-
11
-
-
84942983783
-
Mechanical microenvironments and protein expression associated with formation of different skeletal tissues during bone healing
-
[11] Miller, G.J., Gerstenfeld, L.C., Morgan, E.F., Mechanical microenvironments and protein expression associated with formation of different skeletal tissues during bone healing. Biomech. Model. Mechanobiol. 14 (2015), 1239–1253.
-
(2015)
Biomech. Model. Mechanobiol.
, vol.14
, pp. 1239-1253
-
-
Miller, G.J.1
Gerstenfeld, L.C.2
Morgan, E.F.3
-
12
-
-
84947615903
-
Improving vascularization of engineered bone through the generation of pro-angiogenic effects in co-culture systems
-
[12] Unger, R.E., Dohle, E., Kirkpatrick, C.J., Improving vascularization of engineered bone through the generation of pro-angiogenic effects in co-culture systems. Adv. Drug Deliv. Rev., 2015.
-
(2015)
Adv. Drug Deliv. Rev.
-
-
Unger, R.E.1
Dohle, E.2
Kirkpatrick, C.J.3
-
13
-
-
84879640673
-
Manipulation of in vitro angiogenesis using peptide-coated gold nanoparticles
-
[13] Bartczak, D., et al. Manipulation of in vitro angiogenesis using peptide-coated gold nanoparticles. ACS Nano 7 (2013), 5628–5636.
-
(2013)
ACS Nano
, vol.7
, pp. 5628-5636
-
-
Bartczak, D.1
-
14
-
-
85043162669
-
Mesenchymal stem cells and nano-bioceramics for bone regeneration
-
[14] Kankilic, B., et al. Mesenchymal stem cells and nano-bioceramics for bone regeneration. Curr. Stem Cell Res. Ther., 2015.
-
(2015)
Curr. Stem Cell Res. Ther.
-
-
Kankilic, B.1
-
15
-
-
84888984845
-
Update on statins: hope for osteoporotic fracture healing treatment
-
[15] Ibrahim, N., Mohamed, N., Shuid, A.N., Update on statins: hope for osteoporotic fracture healing treatment. Curr. Drug Targets 14 (2013), 1524–1532.
-
(2013)
Curr. Drug Targets
, vol.14
, pp. 1524-1532
-
-
Ibrahim, N.1
Mohamed, N.2
Shuid, A.N.3
-
16
-
-
84887381454
-
Fibroblast growth factor-2, bone homeostasis and fracture repair
-
[16] Fei, Y., Gronowicz, G., Hurley, M.M., Fibroblast growth factor-2, bone homeostasis and fracture repair. Curr. Pharm. Des. 19 (2013), 3354–3363.
-
(2013)
Curr. Pharm. Des.
, vol.19
, pp. 3354-3363
-
-
Fei, Y.1
Gronowicz, G.2
Hurley, M.M.3
-
17
-
-
84904568851
-
Fracture healing: from basic science to role of nutrition
-
[17] Giganti, M.G., et al. Fracture healing: from basic science to role of nutrition. Front. Biosci. (Landmark Ed.) 19 (2014), 1162–1175.
-
(2014)
Front. Biosci. (Landmark Ed.)
, vol.19
, pp. 1162-1175
-
-
Giganti, M.G.1
-
18
-
-
84899528119
-
Use of bone morphogenetic proteins (BMPs) for the treatment of pseudarthroses – efficiency and therapy failure
-
[18] Hausmann, M., et al. Use of bone morphogenetic proteins (BMPs) for the treatment of pseudarthroses – efficiency and therapy failure. Z. Orthop. Unfall. 152 (2014), 144–151.
-
(2014)
Z. Orthop. Unfall.
, vol.152
, pp. 144-151
-
-
Hausmann, M.1
-
19
-
-
0031733871
-
Expression of bone morphogenetic proteins in fracture healing
-
[19] Bostrom, M.P., Expression of bone morphogenetic proteins in fracture healing. Clin. Orthop. Relat. Res., 1998, S116–S123.
-
(1998)
Clin. Orthop. Relat. Res.
, pp. S116-S123
-
-
Bostrom, M.P.1
-
20
-
-
80053156520
-
An update on transforming growth factor-beta (TGF-beta): sources, types, functions and clinical applicability for cartilage/bone healing
-
[20] Patil, A.S., Sable, R.B., Kothari, R.M., An update on transforming growth factor-beta (TGF-beta): sources, types, functions and clinical applicability for cartilage/bone healing. J. Cell. Physiol. 226 (2011), 3094–3103.
-
(2011)
J. Cell. Physiol.
, vol.226
, pp. 3094-3103
-
-
Patil, A.S.1
Sable, R.B.2
Kothari, R.M.3
-
21
-
-
39749123356
-
FGF-1: from biology through engineering to potential medical applications
-
[21] Zakrzewska, M., Marcinkowska, E., Wiedlocha, A., FGF-1: from biology through engineering to potential medical applications. Crit. Rev. Clin. Lab. Sci. 45 (2008), 91–135.
-
(2008)
Crit. Rev. Clin. Lab. Sci.
, vol.45
, pp. 91-135
-
-
Zakrzewska, M.1
Marcinkowska, E.2
Wiedlocha, A.3
-
22
-
-
84872410777
-
VEGF and bone cell signalling: an essential vessel for communication?
-
[22] Clarkin, C.E., Gerstenfeld, L.C., VEGF and bone cell signalling: an essential vessel for communication?. Cell Biochem. Funct. 31 (2013), 1–11.
-
(2013)
Cell Biochem. Funct.
, vol.31
, pp. 1-11
-
-
Clarkin, C.E.1
Gerstenfeld, L.C.2
-
23
-
-
73849120770
-
Investigating the role of PDGF as a potential drug therapy in bone formation and fracture healing
-
[23] Graham, S., et al. Investigating the role of PDGF as a potential drug therapy in bone formation and fracture healing. Expert Opin. Invest. Drug 18 (2009), 1633–1654.
-
(2009)
Expert Opin. Invest. Drug
, vol.18
, pp. 1633-1654
-
-
Graham, S.1
-
24
-
-
84903960656
-
Role of osteocyte-derived insulin-like growth factor I in developmental growth, modeling, remodeling, and regeneration of the bone
-
[24] Sheng, M.H., Lau, K.H., Baylink, D.J., Role of osteocyte-derived insulin-like growth factor I in developmental growth, modeling, remodeling, and regeneration of the bone. J. Bone Metab. 21 (2014), 41–54.
-
(2014)
J. Bone Metab.
, vol.21
, pp. 41-54
-
-
Sheng, M.H.1
Lau, K.H.2
Baylink, D.J.3
-
25
-
-
84892409221
-
The role of cytokines in posttraumatic arthritis
-
[25] Olson, S.A., et al. The role of cytokines in posttraumatic arthritis. J. Am. Acad. Orthop. Surg. 22 (2014), 29–37.
-
(2014)
J. Am. Acad. Orthop. Surg.
, vol.22
, pp. 29-37
-
-
Olson, S.A.1
-
27
-
-
84865303887
-
Biomaterial delivery of morphogens to mimic the natural healing cascade in bone
-
[27] Mehta, M., et al. Biomaterial delivery of morphogens to mimic the natural healing cascade in bone. Adv. Drug Deliv. Rev. 64 (2012), 1257–1276.
-
(2012)
Adv. Drug Deliv. Rev.
, vol.64
, pp. 1257-1276
-
-
Mehta, M.1
-
28
-
-
84901416360
-
Biological perspectives of delayed fracture healing
-
[28] Hankenson, K.D., Zimmerman, G., Marcucio, R., Biological perspectives of delayed fracture healing. Injury 45:Suppl. 2 (2014), S8–S15.
-
(2014)
Injury
, vol.45
, pp. S8-S15
-
-
Hankenson, K.D.1
Zimmerman, G.2
Marcucio, R.3
-
29
-
-
84901389096
-
Delayed union and nonunions: epidemiology, clinical issues, and financial aspects
-
[29] Hak, D.J., et al. Delayed union and nonunions: epidemiology, clinical issues, and financial aspects. Injury 45:Suppl. 2 (2014), S3–S7.
-
(2014)
Injury
, vol.45
, pp. S3-S7
-
-
Hak, D.J.1
-
30
-
-
67649559668
-
Bone stimulation for fracture healing: what's all the fuss?
-
[30] Victoria, G., et al. Bone stimulation for fracture healing: what's all the fuss?. Indian J. Orthop. 43 (2009), 117–120.
-
(2009)
Indian J. Orthop.
, vol.43
, pp. 117-120
-
-
Victoria, G.1
-
31
-
-
84895924483
-
Biomaterial scaffolds for treating osteoporotic bone
-
[31] Sterling, J.A., Guelcher, S.A., Biomaterial scaffolds for treating osteoporotic bone. Curr. Osteoporos. Rep. 12 (2014), 48–54.
-
(2014)
Curr. Osteoporos. Rep.
, vol.12
, pp. 48-54
-
-
Sterling, J.A.1
Guelcher, S.A.2
-
32
-
-
84898890256
-
The clinical use of bone morphogenetic proteins revisited: a novel biocompatible carrier device OSTEOGROW for bone healing
-
[32] Vukicevic, S., et al. The clinical use of bone morphogenetic proteins revisited: a novel biocompatible carrier device OSTEOGROW for bone healing. Int. Orthop. 38 (2014), 635–647.
-
(2014)
Int. Orthop.
, vol.38
, pp. 635-647
-
-
Vukicevic, S.1
-
33
-
-
84879130390
-
Biomaterials in bone repair
-
[33] Puska, M., Aho, A.J., Vallittu, P.K., Biomaterials in bone repair. Duodecim 129 (2013), 489–496.
-
(2013)
Duodecim
, vol.129
, pp. 489-496
-
-
Puska, M.1
Aho, A.J.2
Vallittu, P.K.3
-
34
-
-
84863564312
-
A systematic review of biologic and technical complications with fixed implant rehabilitations for edentulous patients
-
[34] Papaspyridakos, P., et al. A systematic review of biologic and technical complications with fixed implant rehabilitations for edentulous patients. Int. J. Oral Maxillofac. Implants 27 (2012), 102–110.
-
(2012)
Int. J. Oral Maxillofac. Implants
, vol.27
, pp. 102-110
-
-
Papaspyridakos, P.1
-
35
-
-
84899076559
-
Bone regenerative medicine: classic options, novel strategies, and future directions
-
[35] Oryan, A., et al. Bone regenerative medicine: classic options, novel strategies, and future directions. J. Orthop. Surg. Res., 9, 2014, 18.
-
(2014)
J. Orthop. Surg. Res.
, vol.9
, pp. 18
-
-
Oryan, A.1
-
36
-
-
84877086335
-
Naturally and synthetic smart composite biomaterials for tissue regeneration
-
[36] Perez, R.A., et al. Naturally and synthetic smart composite biomaterials for tissue regeneration. Adv. Drug Deliv. Rev. 65 (2013), 471–496.
-
(2013)
Adv. Drug Deliv. Rev.
, vol.65
, pp. 471-496
-
-
Perez, R.A.1
-
37
-
-
84898640767
-
Novel nano-rough polymers for cartilage tissue engineering
-
[37] Balasundaram, G., Storey, D.M., Webster, T.J., Novel nano-rough polymers for cartilage tissue engineering. Int. J. Nanomed. 9 (2014), 1845–1853.
-
(2014)
Int. J. Nanomed.
, vol.9
, pp. 1845-1853
-
-
Balasundaram, G.1
Storey, D.M.2
Webster, T.J.3
-
38
-
-
79751500179
-
Electrospun silk fibroin-hydroxybutyl chitosan nanofibrous scaffolds to biomimic extracellular matrix
-
[38] Zhang, K., et al. Electrospun silk fibroin-hydroxybutyl chitosan nanofibrous scaffolds to biomimic extracellular matrix. J. Biomater. Sci. Polym. Ed. 22 (2011), 1069–1082.
-
(2011)
J. Biomater. Sci. Polym. Ed.
, vol.22
, pp. 1069-1082
-
-
Zhang, K.1
-
39
-
-
0033858996
-
Morphogenetic messages are in the extracellular matrix: biotechnology from bench to bedside
-
[39] Reddi, A.H., Morphogenetic messages are in the extracellular matrix: biotechnology from bench to bedside. Biochem. Soc. Trans. 28 (2000), 345–349.
-
(2000)
Biochem. Soc. Trans.
, vol.28
, pp. 345-349
-
-
Reddi, A.H.1
-
40
-
-
3843150535
-
Localized delivery of growth factors for bone repair
-
[40] Luginbuehl, V., et al. Localized delivery of growth factors for bone repair. Eur. J. Pharm. Biopharm. 58 (2004), 197–208.
-
(2004)
Eur. J. Pharm. Biopharm.
, vol.58
, pp. 197-208
-
-
Luginbuehl, V.1
-
41
-
-
84924614121
-
Nanoscale control of surface immobilized BMP-2: toward a quantitative assessment of BMP-mediated signaling events
-
[41] Schwab, E.H., et al. Nanoscale control of surface immobilized BMP-2: toward a quantitative assessment of BMP-mediated signaling events. Nano Lett. 15 (2015), 1526–1534.
-
(2015)
Nano Lett.
, vol.15
, pp. 1526-1534
-
-
Schwab, E.H.1
-
42
-
-
84859397983
-
Injectable hydrogels for bone and cartilage repair
-
[42] Amini, A.A., Nair, L.S., Injectable hydrogels for bone and cartilage repair. Biomed. Mater. 7 (2012), 024105–24113.
-
(2012)
Biomed. Mater.
, vol.7
, pp. 024105-024113
-
-
Amini, A.A.1
Nair, L.S.2
-
43
-
-
84899835650
-
Bone regeneration for murine femur fracture by gelatin hydrogels incorporating basic fibroblast growth factor with different release profiles
-
[43] Furuya, H., Tabata, Y., Kaneko, K., Bone regeneration for murine femur fracture by gelatin hydrogels incorporating basic fibroblast growth factor with different release profiles. Tissue Eng. Pt. A 20 (2014), 1531–1541.
-
(2014)
Tissue Eng. Pt. A
, vol.20
, pp. 1531-1541
-
-
Furuya, H.1
Tabata, Y.2
Kaneko, K.3
-
44
-
-
80053968739
-
Heparin mimetic peptide nanofibers promote angiogenesis
-
[44] Mammadov, R., et al. Heparin mimetic peptide nanofibers promote angiogenesis. Biomacromolecules 12 (2011), 3508–3519.
-
(2011)
Biomacromolecules
, vol.12
, pp. 3508-3519
-
-
Mammadov, R.1
-
45
-
-
84871525361
-
Superparamagnetic iron oxide nanoparticle targeting of MSCs in vascular injury
-
[45] Riegler, J., et al. Superparamagnetic iron oxide nanoparticle targeting of MSCs in vascular injury. Biomaterials 34 (2013), 1987–1994.
-
(2013)
Biomaterials
, vol.34
, pp. 1987-1994
-
-
Riegler, J.1
-
46
-
-
84908374740
-
Remotely activated mechanotransduction via magnetic nanoparticles promotes mineralization synergistically with bone morphogenetic protein 2: applications for injectable cell therapy
-
[46] Henstock, J.R., et al. Remotely activated mechanotransduction via magnetic nanoparticles promotes mineralization synergistically with bone morphogenetic protein 2: applications for injectable cell therapy. Stem Cells Transl. Med. 3 (2014), 1363–1374.
-
(2014)
Stem Cells Transl. Med.
, vol.3
, pp. 1363-1374
-
-
Henstock, J.R.1
-
47
-
-
76349102822
-
A novel calcium phosphate ceramic-magnetic nanoparticle composite as a potential bone substitute
-
[47] Wu, Y., et al. A novel calcium phosphate ceramic-magnetic nanoparticle composite as a potential bone substitute. Biomed. Mater., 5, 2010, 15001.
-
(2010)
Biomed. Mater.
, vol.5
, pp. 15001
-
-
Wu, Y.1
-
48
-
-
78649829784
-
Paramagnetic nanofibrous composite films enhance the osteogenic responses of pre-osteoblast cells
-
[48] Meng, J., et al. Paramagnetic nanofibrous composite films enhance the osteogenic responses of pre-osteoblast cells. Nanoscale 2 (2010), 2565–2569.
-
(2010)
Nanoscale
, vol.2
, pp. 2565-2569
-
-
Meng, J.1
-
49
-
-
84864401726
-
Innovative magnetic scaffolds for orthopedic tissue engineering
-
[49] Panseri, S., et al. Innovative magnetic scaffolds for orthopedic tissue engineering. J. Biomed. Mater. Res. A 100 (2012), 2278–2286.
-
(2012)
J. Biomed. Mater. Res. A
, vol.100
, pp. 2278-2286
-
-
Panseri, S.1
-
50
-
-
75149177046
-
A novel route in bone tissue engineering: magnetic biomimetic scaffolds
-
[50] Bock, N., et al. A novel route in bone tissue engineering: magnetic biomimetic scaffolds. Acta Biomater. 6 (2010), 786–796.
-
(2010)
Acta Biomater.
, vol.6
, pp. 786-796
-
-
Bock, N.1
-
51
-
-
84860336186
-
Nanomedicine as an emerging approach against intracellular pathogens
-
[51] Armstead, A.L., Li, B., Nanomedicine as an emerging approach against intracellular pathogens. Int. J. Nanomed. 6 (2011), 3281–3293.
-
(2011)
Int. J. Nanomed.
, vol.6
, pp. 3281-3293
-
-
Armstead, A.L.1
Li, B.2
-
52
-
-
84881409171
-
Biomimetic electrospun nanofibrous structures for tissue engineering
-
[52] Wang, X., Ding, B., Li, B., Biomimetic electrospun nanofibrous structures for tissue engineering. Mater. Today (Kidlington) 16 (2013), 229–241.
-
(2013)
Mater. Today (Kidlington)
, vol.16
, pp. 229-241
-
-
Wang, X.1
Ding, B.2
Li, B.3
-
53
-
-
84899795392
-
Exploring the potential role of tungsten carbide cobalt (WC–Co) nanoparticle internalization in observed toxicity toward lung epithelial cells in vitro
-
[53] Armstead, A.L., Arena, C.B., Li, B., Exploring the potential role of tungsten carbide cobalt (WC–Co) nanoparticle internalization in observed toxicity toward lung epithelial cells in vitro. Toxicol. Appl. Pharmacol. 278 (2014), 1–8.
-
(2014)
Toxicol. Appl. Pharmacol.
, vol.278
, pp. 1-8
-
-
Armstead, A.L.1
Arena, C.B.2
Li, B.3
-
54
-
-
20644449754
-
Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles
-
[54] Oberdorster, G., Oberdorster, E., Oberdorster, J., Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 113 (2005), 823–839.
-
(2005)
Environ. Health Perspect.
, vol.113
, pp. 823-839
-
-
Oberdorster, G.1
Oberdorster, E.2
Oberdorster, J.3
-
55
-
-
84903824388
-
Physical damage – the origin of nanotoxicity
-
[55] Zhen-bo, M., Yang, X., Ming-yuan, L., Physical damage – the origin of nanotoxicity. Chin. J. Pharmacol. Toxicol. 2 (2014), 154–160.
-
(2014)
Chin. J. Pharmacol. Toxicol.
, vol.2
, pp. 154-160
-
-
Zhen-bo, M.1
Yang, X.2
Ming-yuan, L.3
-
56
-
-
84931010803
-
Tungsten carbide-cobalt nanoparticles induce reactive oxygen species, AKT, ERK, AP-1, NF-kappaB, VEGF, and angiogenesis
-
[56] Liu, L.Z., et al. Tungsten carbide-cobalt nanoparticles induce reactive oxygen species, AKT, ERK, AP-1, NF-kappaB, VEGF, and angiogenesis. Biol. Trace Elem. Res. 166 (2015), 57–65.
-
(2015)
Biol. Trace Elem. Res.
, vol.166
, pp. 57-65
-
-
Liu, L.Z.1
-
57
-
-
84928902771
-
Acute inflammatory responses of nanoparticles in an intra-tracheal instillation rat model
-
[57] Armstead, A.L., et al. Acute inflammatory responses of nanoparticles in an intra-tracheal instillation rat model. PLOS ONE, 10, 2015, e0118778.
-
(2015)
PLOS ONE
, vol.10
, pp. e0118778
-
-
Armstead, A.L.1
|