메뉴 건너뛰기




Volumn 19, Issue 8, 2016, Pages 451-463

Nanomaterials promise better bone repair

Author keywords

[No Author keywords available]

Indexed keywords

BONE; NANOSTRUCTURED MATERIALS; REPAIR;

EID: 84954285386     PISSN: 13697021     EISSN: 18734103     Source Type: Journal    
DOI: 10.1016/j.mattod.2015.12.003     Document Type: Review
Times cited : (107)

References (57)
  • 1
    • 84858976028 scopus 로고    scopus 로고
    • Functionalized nanostructures with application in regenerative medicine
    • [1] Peran, M., et al. Functionalized nanostructures with application in regenerative medicine. Int. J. Mol. Sci. 13 (2012), 3847–3886.
    • (2012) Int. J. Mol. Sci. , vol.13 , pp. 3847-3886
    • Peran, M.1
  • 2
    • 84870330878 scopus 로고    scopus 로고
    • Nanoparticles and their potential for application in bone
    • [2] Tautzenberger, A., Kovtun, A., Ignatius, A., Nanoparticles and their potential for application in bone. Int. J. Nanomed. 7 (2012), 4545–4557.
    • (2012) Int. J. Nanomed. , vol.7 , pp. 4545-4557
    • Tautzenberger, A.1    Kovtun, A.2    Ignatius, A.3
  • 3
    • 84655161951 scopus 로고    scopus 로고
    • Advances in bone repair with nanobiomaterials: mini-review
    • [3] Zhang, Z.G., et al. Advances in bone repair with nanobiomaterials: mini-review. Cytotechnology 63 (2011), 437–443.
    • (2011) Cytotechnology , vol.63 , pp. 437-443
    • Zhang, Z.G.1
  • 4
    • 36249006538 scopus 로고    scopus 로고
    • A triphasic ceramic-coated porous hydroxyapatite for tissue engineering application
    • [4] Nair, M.B., et al. A triphasic ceramic-coated porous hydroxyapatite for tissue engineering application. Acta Biomater. 4 (2008), 173–181.
    • (2008) Acta Biomater. , vol.4 , pp. 173-181
    • Nair, M.B.1
  • 5
    • 0038143185 scopus 로고    scopus 로고
    • Nanotechnology: convergence with modern biology and medicine
    • [5] Roco, M.C., Nanotechnology: convergence with modern biology and medicine. Curr. Opin. Biotechnol. 14 (2003), 337–346.
    • (2003) Curr. Opin. Biotechnol. , vol.14 , pp. 337-346
    • Roco, M.C.1
  • 6
    • 34547866713 scopus 로고    scopus 로고
    • Finding fluorescent needles in the cardiac haystack: tracking human mesenchymal stem cells labeled with quantum dots for quantitative in vivo three-dimensional fluorescence analysis
    • [6] Rosen, A.B., et al. Finding fluorescent needles in the cardiac haystack: tracking human mesenchymal stem cells labeled with quantum dots for quantitative in vivo three-dimensional fluorescence analysis. Stem Cells 25 (2007), 2128–2138.
    • (2007) Stem Cells , vol.25 , pp. 2128-2138
    • Rosen, A.B.1
  • 7
    • 84859811743 scopus 로고    scopus 로고
    • Towards whole-body imaging at the single cell level using ultra-sensitive stem cell labeling with oligo-arginine modified upconversion nanoparticles
    • [7] Wang, C., et al. Towards whole-body imaging at the single cell level using ultra-sensitive stem cell labeling with oligo-arginine modified upconversion nanoparticles. Biomaterials 33 (2012), 4872–4881.
    • (2012) Biomaterials , vol.33 , pp. 4872-4881
    • Wang, C.1
  • 8
    • 78649616737 scopus 로고    scopus 로고
    • Gold nanoparticles promote osteogenic differentiation of mesenchymal stem cells through p38 MAPK pathway
    • [8] Yi, C., et al. Gold nanoparticles promote osteogenic differentiation of mesenchymal stem cells through p38 MAPK pathway. ACS Nano 4 (2010), 6439–6448.
    • (2010) ACS Nano , vol.4 , pp. 6439-6448
    • Yi, C.1
  • 9
    • 84879409298 scopus 로고    scopus 로고
    • Multifaceted applications of nanomaterials in cell engineering and therapy
    • [9] Chen, H., et al. Multifaceted applications of nanomaterials in cell engineering and therapy. Biotechnol. Adv. 31 (2013), 638–653.
    • (2013) Biotechnol. Adv. , vol.31 , pp. 638-653
    • Chen, H.1
  • 10
    • 84943188600 scopus 로고    scopus 로고
    • Quantitative phenotyping of bone fracture repair: a review
    • [10] Casanova, M., et al. Quantitative phenotyping of bone fracture repair: a review. Bonekey Rep., 3, 2014, 550.
    • (2014) Bonekey Rep. , vol.3 , pp. 550
    • Casanova, M.1
  • 11
    • 84942983783 scopus 로고    scopus 로고
    • Mechanical microenvironments and protein expression associated with formation of different skeletal tissues during bone healing
    • [11] Miller, G.J., Gerstenfeld, L.C., Morgan, E.F., Mechanical microenvironments and protein expression associated with formation of different skeletal tissues during bone healing. Biomech. Model. Mechanobiol. 14 (2015), 1239–1253.
    • (2015) Biomech. Model. Mechanobiol. , vol.14 , pp. 1239-1253
    • Miller, G.J.1    Gerstenfeld, L.C.2    Morgan, E.F.3
  • 12
    • 84947615903 scopus 로고    scopus 로고
    • Improving vascularization of engineered bone through the generation of pro-angiogenic effects in co-culture systems
    • [12] Unger, R.E., Dohle, E., Kirkpatrick, C.J., Improving vascularization of engineered bone through the generation of pro-angiogenic effects in co-culture systems. Adv. Drug Deliv. Rev., 2015.
    • (2015) Adv. Drug Deliv. Rev.
    • Unger, R.E.1    Dohle, E.2    Kirkpatrick, C.J.3
  • 13
    • 84879640673 scopus 로고    scopus 로고
    • Manipulation of in vitro angiogenesis using peptide-coated gold nanoparticles
    • [13] Bartczak, D., et al. Manipulation of in vitro angiogenesis using peptide-coated gold nanoparticles. ACS Nano 7 (2013), 5628–5636.
    • (2013) ACS Nano , vol.7 , pp. 5628-5636
    • Bartczak, D.1
  • 14
    • 85043162669 scopus 로고    scopus 로고
    • Mesenchymal stem cells and nano-bioceramics for bone regeneration
    • [14] Kankilic, B., et al. Mesenchymal stem cells and nano-bioceramics for bone regeneration. Curr. Stem Cell Res. Ther., 2015.
    • (2015) Curr. Stem Cell Res. Ther.
    • Kankilic, B.1
  • 15
    • 84888984845 scopus 로고    scopus 로고
    • Update on statins: hope for osteoporotic fracture healing treatment
    • [15] Ibrahim, N., Mohamed, N., Shuid, A.N., Update on statins: hope for osteoporotic fracture healing treatment. Curr. Drug Targets 14 (2013), 1524–1532.
    • (2013) Curr. Drug Targets , vol.14 , pp. 1524-1532
    • Ibrahim, N.1    Mohamed, N.2    Shuid, A.N.3
  • 16
    • 84887381454 scopus 로고    scopus 로고
    • Fibroblast growth factor-2, bone homeostasis and fracture repair
    • [16] Fei, Y., Gronowicz, G., Hurley, M.M., Fibroblast growth factor-2, bone homeostasis and fracture repair. Curr. Pharm. Des. 19 (2013), 3354–3363.
    • (2013) Curr. Pharm. Des. , vol.19 , pp. 3354-3363
    • Fei, Y.1    Gronowicz, G.2    Hurley, M.M.3
  • 17
    • 84904568851 scopus 로고    scopus 로고
    • Fracture healing: from basic science to role of nutrition
    • [17] Giganti, M.G., et al. Fracture healing: from basic science to role of nutrition. Front. Biosci. (Landmark Ed.) 19 (2014), 1162–1175.
    • (2014) Front. Biosci. (Landmark Ed.) , vol.19 , pp. 1162-1175
    • Giganti, M.G.1
  • 18
    • 84899528119 scopus 로고    scopus 로고
    • Use of bone morphogenetic proteins (BMPs) for the treatment of pseudarthroses – efficiency and therapy failure
    • [18] Hausmann, M., et al. Use of bone morphogenetic proteins (BMPs) for the treatment of pseudarthroses – efficiency and therapy failure. Z. Orthop. Unfall. 152 (2014), 144–151.
    • (2014) Z. Orthop. Unfall. , vol.152 , pp. 144-151
    • Hausmann, M.1
  • 19
    • 0031733871 scopus 로고    scopus 로고
    • Expression of bone morphogenetic proteins in fracture healing
    • [19] Bostrom, M.P., Expression of bone morphogenetic proteins in fracture healing. Clin. Orthop. Relat. Res., 1998, S116–S123.
    • (1998) Clin. Orthop. Relat. Res. , pp. S116-S123
    • Bostrom, M.P.1
  • 20
    • 80053156520 scopus 로고    scopus 로고
    • An update on transforming growth factor-beta (TGF-beta): sources, types, functions and clinical applicability for cartilage/bone healing
    • [20] Patil, A.S., Sable, R.B., Kothari, R.M., An update on transforming growth factor-beta (TGF-beta): sources, types, functions and clinical applicability for cartilage/bone healing. J. Cell. Physiol. 226 (2011), 3094–3103.
    • (2011) J. Cell. Physiol. , vol.226 , pp. 3094-3103
    • Patil, A.S.1    Sable, R.B.2    Kothari, R.M.3
  • 21
    • 39749123356 scopus 로고    scopus 로고
    • FGF-1: from biology through engineering to potential medical applications
    • [21] Zakrzewska, M., Marcinkowska, E., Wiedlocha, A., FGF-1: from biology through engineering to potential medical applications. Crit. Rev. Clin. Lab. Sci. 45 (2008), 91–135.
    • (2008) Crit. Rev. Clin. Lab. Sci. , vol.45 , pp. 91-135
    • Zakrzewska, M.1    Marcinkowska, E.2    Wiedlocha, A.3
  • 22
    • 84872410777 scopus 로고    scopus 로고
    • VEGF and bone cell signalling: an essential vessel for communication?
    • [22] Clarkin, C.E., Gerstenfeld, L.C., VEGF and bone cell signalling: an essential vessel for communication?. Cell Biochem. Funct. 31 (2013), 1–11.
    • (2013) Cell Biochem. Funct. , vol.31 , pp. 1-11
    • Clarkin, C.E.1    Gerstenfeld, L.C.2
  • 23
    • 73849120770 scopus 로고    scopus 로고
    • Investigating the role of PDGF as a potential drug therapy in bone formation and fracture healing
    • [23] Graham, S., et al. Investigating the role of PDGF as a potential drug therapy in bone formation and fracture healing. Expert Opin. Invest. Drug 18 (2009), 1633–1654.
    • (2009) Expert Opin. Invest. Drug , vol.18 , pp. 1633-1654
    • Graham, S.1
  • 24
    • 84903960656 scopus 로고    scopus 로고
    • Role of osteocyte-derived insulin-like growth factor I in developmental growth, modeling, remodeling, and regeneration of the bone
    • [24] Sheng, M.H., Lau, K.H., Baylink, D.J., Role of osteocyte-derived insulin-like growth factor I in developmental growth, modeling, remodeling, and regeneration of the bone. J. Bone Metab. 21 (2014), 41–54.
    • (2014) J. Bone Metab. , vol.21 , pp. 41-54
    • Sheng, M.H.1    Lau, K.H.2    Baylink, D.J.3
  • 25
    • 84892409221 scopus 로고    scopus 로고
    • The role of cytokines in posttraumatic arthritis
    • [25] Olson, S.A., et al. The role of cytokines in posttraumatic arthritis. J. Am. Acad. Orthop. Surg. 22 (2014), 29–37.
    • (2014) J. Am. Acad. Orthop. Surg. , vol.22 , pp. 29-37
    • Olson, S.A.1
  • 27
    • 84865303887 scopus 로고    scopus 로고
    • Biomaterial delivery of morphogens to mimic the natural healing cascade in bone
    • [27] Mehta, M., et al. Biomaterial delivery of morphogens to mimic the natural healing cascade in bone. Adv. Drug Deliv. Rev. 64 (2012), 1257–1276.
    • (2012) Adv. Drug Deliv. Rev. , vol.64 , pp. 1257-1276
    • Mehta, M.1
  • 28
    • 84901416360 scopus 로고    scopus 로고
    • Biological perspectives of delayed fracture healing
    • [28] Hankenson, K.D., Zimmerman, G., Marcucio, R., Biological perspectives of delayed fracture healing. Injury 45:Suppl. 2 (2014), S8–S15.
    • (2014) Injury , vol.45 , pp. S8-S15
    • Hankenson, K.D.1    Zimmerman, G.2    Marcucio, R.3
  • 29
    • 84901389096 scopus 로고    scopus 로고
    • Delayed union and nonunions: epidemiology, clinical issues, and financial aspects
    • [29] Hak, D.J., et al. Delayed union and nonunions: epidemiology, clinical issues, and financial aspects. Injury 45:Suppl. 2 (2014), S3–S7.
    • (2014) Injury , vol.45 , pp. S3-S7
    • Hak, D.J.1
  • 30
    • 67649559668 scopus 로고    scopus 로고
    • Bone stimulation for fracture healing: what's all the fuss?
    • [30] Victoria, G., et al. Bone stimulation for fracture healing: what's all the fuss?. Indian J. Orthop. 43 (2009), 117–120.
    • (2009) Indian J. Orthop. , vol.43 , pp. 117-120
    • Victoria, G.1
  • 31
    • 84895924483 scopus 로고    scopus 로고
    • Biomaterial scaffolds for treating osteoporotic bone
    • [31] Sterling, J.A., Guelcher, S.A., Biomaterial scaffolds for treating osteoporotic bone. Curr. Osteoporos. Rep. 12 (2014), 48–54.
    • (2014) Curr. Osteoporos. Rep. , vol.12 , pp. 48-54
    • Sterling, J.A.1    Guelcher, S.A.2
  • 32
    • 84898890256 scopus 로고    scopus 로고
    • The clinical use of bone morphogenetic proteins revisited: a novel biocompatible carrier device OSTEOGROW for bone healing
    • [32] Vukicevic, S., et al. The clinical use of bone morphogenetic proteins revisited: a novel biocompatible carrier device OSTEOGROW for bone healing. Int. Orthop. 38 (2014), 635–647.
    • (2014) Int. Orthop. , vol.38 , pp. 635-647
    • Vukicevic, S.1
  • 33
    • 84879130390 scopus 로고    scopus 로고
    • Biomaterials in bone repair
    • [33] Puska, M., Aho, A.J., Vallittu, P.K., Biomaterials in bone repair. Duodecim 129 (2013), 489–496.
    • (2013) Duodecim , vol.129 , pp. 489-496
    • Puska, M.1    Aho, A.J.2    Vallittu, P.K.3
  • 34
    • 84863564312 scopus 로고    scopus 로고
    • A systematic review of biologic and technical complications with fixed implant rehabilitations for edentulous patients
    • [34] Papaspyridakos, P., et al. A systematic review of biologic and technical complications with fixed implant rehabilitations for edentulous patients. Int. J. Oral Maxillofac. Implants 27 (2012), 102–110.
    • (2012) Int. J. Oral Maxillofac. Implants , vol.27 , pp. 102-110
    • Papaspyridakos, P.1
  • 35
    • 84899076559 scopus 로고    scopus 로고
    • Bone regenerative medicine: classic options, novel strategies, and future directions
    • [35] Oryan, A., et al. Bone regenerative medicine: classic options, novel strategies, and future directions. J. Orthop. Surg. Res., 9, 2014, 18.
    • (2014) J. Orthop. Surg. Res. , vol.9 , pp. 18
    • Oryan, A.1
  • 36
    • 84877086335 scopus 로고    scopus 로고
    • Naturally and synthetic smart composite biomaterials for tissue regeneration
    • [36] Perez, R.A., et al. Naturally and synthetic smart composite biomaterials for tissue regeneration. Adv. Drug Deliv. Rev. 65 (2013), 471–496.
    • (2013) Adv. Drug Deliv. Rev. , vol.65 , pp. 471-496
    • Perez, R.A.1
  • 37
    • 84898640767 scopus 로고    scopus 로고
    • Novel nano-rough polymers for cartilage tissue engineering
    • [37] Balasundaram, G., Storey, D.M., Webster, T.J., Novel nano-rough polymers for cartilage tissue engineering. Int. J. Nanomed. 9 (2014), 1845–1853.
    • (2014) Int. J. Nanomed. , vol.9 , pp. 1845-1853
    • Balasundaram, G.1    Storey, D.M.2    Webster, T.J.3
  • 38
    • 79751500179 scopus 로고    scopus 로고
    • Electrospun silk fibroin-hydroxybutyl chitosan nanofibrous scaffolds to biomimic extracellular matrix
    • [38] Zhang, K., et al. Electrospun silk fibroin-hydroxybutyl chitosan nanofibrous scaffolds to biomimic extracellular matrix. J. Biomater. Sci. Polym. Ed. 22 (2011), 1069–1082.
    • (2011) J. Biomater. Sci. Polym. Ed. , vol.22 , pp. 1069-1082
    • Zhang, K.1
  • 39
    • 0033858996 scopus 로고    scopus 로고
    • Morphogenetic messages are in the extracellular matrix: biotechnology from bench to bedside
    • [39] Reddi, A.H., Morphogenetic messages are in the extracellular matrix: biotechnology from bench to bedside. Biochem. Soc. Trans. 28 (2000), 345–349.
    • (2000) Biochem. Soc. Trans. , vol.28 , pp. 345-349
    • Reddi, A.H.1
  • 40
    • 3843150535 scopus 로고    scopus 로고
    • Localized delivery of growth factors for bone repair
    • [40] Luginbuehl, V., et al. Localized delivery of growth factors for bone repair. Eur. J. Pharm. Biopharm. 58 (2004), 197–208.
    • (2004) Eur. J. Pharm. Biopharm. , vol.58 , pp. 197-208
    • Luginbuehl, V.1
  • 41
    • 84924614121 scopus 로고    scopus 로고
    • Nanoscale control of surface immobilized BMP-2: toward a quantitative assessment of BMP-mediated signaling events
    • [41] Schwab, E.H., et al. Nanoscale control of surface immobilized BMP-2: toward a quantitative assessment of BMP-mediated signaling events. Nano Lett. 15 (2015), 1526–1534.
    • (2015) Nano Lett. , vol.15 , pp. 1526-1534
    • Schwab, E.H.1
  • 42
    • 84859397983 scopus 로고    scopus 로고
    • Injectable hydrogels for bone and cartilage repair
    • [42] Amini, A.A., Nair, L.S., Injectable hydrogels for bone and cartilage repair. Biomed. Mater. 7 (2012), 024105–24113.
    • (2012) Biomed. Mater. , vol.7 , pp. 024105-024113
    • Amini, A.A.1    Nair, L.S.2
  • 43
    • 84899835650 scopus 로고    scopus 로고
    • Bone regeneration for murine femur fracture by gelatin hydrogels incorporating basic fibroblast growth factor with different release profiles
    • [43] Furuya, H., Tabata, Y., Kaneko, K., Bone regeneration for murine femur fracture by gelatin hydrogels incorporating basic fibroblast growth factor with different release profiles. Tissue Eng. Pt. A 20 (2014), 1531–1541.
    • (2014) Tissue Eng. Pt. A , vol.20 , pp. 1531-1541
    • Furuya, H.1    Tabata, Y.2    Kaneko, K.3
  • 44
    • 80053968739 scopus 로고    scopus 로고
    • Heparin mimetic peptide nanofibers promote angiogenesis
    • [44] Mammadov, R., et al. Heparin mimetic peptide nanofibers promote angiogenesis. Biomacromolecules 12 (2011), 3508–3519.
    • (2011) Biomacromolecules , vol.12 , pp. 3508-3519
    • Mammadov, R.1
  • 45
    • 84871525361 scopus 로고    scopus 로고
    • Superparamagnetic iron oxide nanoparticle targeting of MSCs in vascular injury
    • [45] Riegler, J., et al. Superparamagnetic iron oxide nanoparticle targeting of MSCs in vascular injury. Biomaterials 34 (2013), 1987–1994.
    • (2013) Biomaterials , vol.34 , pp. 1987-1994
    • Riegler, J.1
  • 46
    • 84908374740 scopus 로고    scopus 로고
    • Remotely activated mechanotransduction via magnetic nanoparticles promotes mineralization synergistically with bone morphogenetic protein 2: applications for injectable cell therapy
    • [46] Henstock, J.R., et al. Remotely activated mechanotransduction via magnetic nanoparticles promotes mineralization synergistically with bone morphogenetic protein 2: applications for injectable cell therapy. Stem Cells Transl. Med. 3 (2014), 1363–1374.
    • (2014) Stem Cells Transl. Med. , vol.3 , pp. 1363-1374
    • Henstock, J.R.1
  • 47
    • 76349102822 scopus 로고    scopus 로고
    • A novel calcium phosphate ceramic-magnetic nanoparticle composite as a potential bone substitute
    • [47] Wu, Y., et al. A novel calcium phosphate ceramic-magnetic nanoparticle composite as a potential bone substitute. Biomed. Mater., 5, 2010, 15001.
    • (2010) Biomed. Mater. , vol.5 , pp. 15001
    • Wu, Y.1
  • 48
    • 78649829784 scopus 로고    scopus 로고
    • Paramagnetic nanofibrous composite films enhance the osteogenic responses of pre-osteoblast cells
    • [48] Meng, J., et al. Paramagnetic nanofibrous composite films enhance the osteogenic responses of pre-osteoblast cells. Nanoscale 2 (2010), 2565–2569.
    • (2010) Nanoscale , vol.2 , pp. 2565-2569
    • Meng, J.1
  • 49
    • 84864401726 scopus 로고    scopus 로고
    • Innovative magnetic scaffolds for orthopedic tissue engineering
    • [49] Panseri, S., et al. Innovative magnetic scaffolds for orthopedic tissue engineering. J. Biomed. Mater. Res. A 100 (2012), 2278–2286.
    • (2012) J. Biomed. Mater. Res. A , vol.100 , pp. 2278-2286
    • Panseri, S.1
  • 50
    • 75149177046 scopus 로고    scopus 로고
    • A novel route in bone tissue engineering: magnetic biomimetic scaffolds
    • [50] Bock, N., et al. A novel route in bone tissue engineering: magnetic biomimetic scaffolds. Acta Biomater. 6 (2010), 786–796.
    • (2010) Acta Biomater. , vol.6 , pp. 786-796
    • Bock, N.1
  • 51
    • 84860336186 scopus 로고    scopus 로고
    • Nanomedicine as an emerging approach against intracellular pathogens
    • [51] Armstead, A.L., Li, B., Nanomedicine as an emerging approach against intracellular pathogens. Int. J. Nanomed. 6 (2011), 3281–3293.
    • (2011) Int. J. Nanomed. , vol.6 , pp. 3281-3293
    • Armstead, A.L.1    Li, B.2
  • 52
    • 84881409171 scopus 로고    scopus 로고
    • Biomimetic electrospun nanofibrous structures for tissue engineering
    • [52] Wang, X., Ding, B., Li, B., Biomimetic electrospun nanofibrous structures for tissue engineering. Mater. Today (Kidlington) 16 (2013), 229–241.
    • (2013) Mater. Today (Kidlington) , vol.16 , pp. 229-241
    • Wang, X.1    Ding, B.2    Li, B.3
  • 53
    • 84899795392 scopus 로고    scopus 로고
    • Exploring the potential role of tungsten carbide cobalt (WC–Co) nanoparticle internalization in observed toxicity toward lung epithelial cells in vitro
    • [53] Armstead, A.L., Arena, C.B., Li, B., Exploring the potential role of tungsten carbide cobalt (WC–Co) nanoparticle internalization in observed toxicity toward lung epithelial cells in vitro. Toxicol. Appl. Pharmacol. 278 (2014), 1–8.
    • (2014) Toxicol. Appl. Pharmacol. , vol.278 , pp. 1-8
    • Armstead, A.L.1    Arena, C.B.2    Li, B.3
  • 54
    • 20644449754 scopus 로고    scopus 로고
    • Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles
    • [54] Oberdorster, G., Oberdorster, E., Oberdorster, J., Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 113 (2005), 823–839.
    • (2005) Environ. Health Perspect. , vol.113 , pp. 823-839
    • Oberdorster, G.1    Oberdorster, E.2    Oberdorster, J.3
  • 56
    • 84931010803 scopus 로고    scopus 로고
    • Tungsten carbide-cobalt nanoparticles induce reactive oxygen species, AKT, ERK, AP-1, NF-kappaB, VEGF, and angiogenesis
    • [56] Liu, L.Z., et al. Tungsten carbide-cobalt nanoparticles induce reactive oxygen species, AKT, ERK, AP-1, NF-kappaB, VEGF, and angiogenesis. Biol. Trace Elem. Res. 166 (2015), 57–65.
    • (2015) Biol. Trace Elem. Res. , vol.166 , pp. 57-65
    • Liu, L.Z.1
  • 57
    • 84928902771 scopus 로고    scopus 로고
    • Acute inflammatory responses of nanoparticles in an intra-tracheal instillation rat model
    • [57] Armstead, A.L., et al. Acute inflammatory responses of nanoparticles in an intra-tracheal instillation rat model. PLOS ONE, 10, 2015, e0118778.
    • (2015) PLOS ONE , vol.10 , pp. e0118778
    • Armstead, A.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.