메뉴 건너뛰기




Volumn 15, Issue 6, 2015, Pages 564-589

Model selection and clustering in stochastic block models based on the exact integrated complete data likelihood

Author keywords

greedy inference; Integrated classification likelihood; networks; random graphs; stochastic block models

Indexed keywords


EID: 84953736602     PISSN: 1471082X     EISSN: 14770342     Source Type: Journal    
DOI: 10.1177/1471082X15577017     Document Type: Article
Times cited : (88)

References (47)
  • 1
    • 26844448057 scopus 로고    scopus 로고
    • The political blogosphere and the 2004 US election
    • Chicago, IL, USA:, In Proceedings of the
    • L.AdamicN.Glance (2005) The political blogosphere and the 2004 US election. In Proceedings of the WWW Workshop on the Weblogging Ecosystem. Chicago, IL, USA.
    • (2005) WWW Workshop on the Weblogging Ecosystem
    • Adamic, L.1    Glance, N.2
  • 5
    • 0742305866 scopus 로고    scopus 로고
    • Network biology: understanding the cell's functional organization
    • A.L.BarabásiZ.N.Oltvai (2004) Network biology: understanding the cell's functional organization.Nature Reviews. Genetics, 5, 101–13.
    • (2004) Nature Reviews. Genetics , vol.5 , pp. 101-113
    • Barabási, A.L.1    Oltvai, Z.N.2
  • 6
    • 0000013152 scopus 로고
    • On the statistical analysis of dirty pictures (with discussions)
    • J.Besag (1986) On the statistical analysis of dirty pictures (with discussions). Journal of the Royal Statistical Society, Series B, 48, 259–302.
    • (1986) Journal of the Royal Statistical Society, Series B , vol.48 , pp. 259-302
    • Besag, J.1
  • 7
    • 75849140057 scopus 로고    scopus 로고
    • A non parametric view of network models and Newman Girvan and other modularities
    • P.J.BickelA.Chen (2009) A non parametric view of network models and Newman Girvan and other modularities. Proceedings of the National Academy of Sciences, 106, 21068–73.
    • (2009) Proceedings of the National Academy of Sciences , vol.106 , pp. 21068-21073
    • Bickel, P.J.1    Chen, A.2
  • 9
    • 77954027738 scopus 로고    scopus 로고
    • Exact and Monte Carlo calculations of integrated likelihoods for the latent class model
    • C.BiernackiG.CeleuxG.Govaert (2010) Exact and Monte Carlo calculations of integrated likelihoods for the latent class model. Journal of Statistical Planning and Inference, 140, 2991–3002.
    • (2010) Journal of Statistical Planning and Inference , vol.140 , pp. 2991-3002
    • Biernacki, C.1    Celeux, G.2    Govaert, G.3
  • 11
    • 40849145323 scopus 로고    scopus 로고
    • Batch kernel SOM and related Laplacian methods for social network analysis
    • R.BouletB.JouveF.RossiN.Villa (2008) Batch kernel SOM and related Laplacian methods for social network analysis. Neurocomputing, 71, 1257–73.
    • (2008) Neurocomputing , vol.71 , pp. 1257-1273
    • Boulet, R.1    Jouve, B.2    Rossi, F.3    Villa, N.4
  • 12
    • 84863639574 scopus 로고    scopus 로고
    • The noise cluster model, a greedy solution to the network community extraction problem
    • E.CômeE.Diemert (2010) The noise cluster model, a greedy solution to the network community extraction problem. Information Intelligence Interaction, 11, 40–59.
    • (2010) Information Intelligence Interaction , vol.11 , pp. 40-59
    • Côme, E.1    Diemert, E.2
  • 14
    • 33244461772 scopus 로고    scopus 로고
    • Spectral measures of bipartivity in complex networks
    • E.EstradaJ.A.Rodriguez-Velazquez (2005) Spectral measures of bipartivity in complex networks. Physical Review E, 72, 046105.
    • (2005) Physical Review E , vol.72 , pp. 046105
    • Estrada, E.1    Rodriguez-Velazquez, J.A.2
  • 15
    • 0002383107 scopus 로고
    • Categorical data analysis of single sociometric relations
    • S.FienbergS.Wasserman (1981) Categorical data analysis of single sociometric relations. Sociological Methodology, 12, 156–92.
    • (1981) Sociological Methodology , vol.12 , pp. 156-192
    • Fienberg, S.1    Wasserman, S.2
  • 21
    • 45749117949 scopus 로고    scopus 로고
    • A Bayesian approach to network modularity
    • J.HofmanC.Wiggins (2008) A Bayesian approach to network modularity. Physical Review Letters, 100, 258701–9900.
    • (2008) Physical Review Letters , vol.100 , pp. 258701-259900
    • Hofman, J.1    Wiggins, C.2
  • 24
    • 84873751778 scopus 로고
    • An invariant form for the prior probability in estimations problems
    • . In
    • H.Jeffreys (1946) An invariant form for the prior probability in estimations problems. In Proceedings of the Royal Society of London. Series A, 186, 453–61.
    • (1946) Proceedings of the Royal Society of London. Series A , vol.186 , pp. 453-461
    • Jeffreys, H.1
  • 25
    • 79951710564 scopus 로고    scopus 로고
    • Stochastic blockmodels and community structure in networks
    • B.KarrerM.E.J.Newman (2011) Stochastic blockmodels and community structure in networks. Physical Review E, 83, 016107.
    • (2011) Physical Review E , vol.83 , pp. 016107
    • Karrer, B.1    Newman, M.E.J.2
  • 26
    • 67349200773 scopus 로고    scopus 로고
    • Representing degree distributions, clustering, and homophily in social networks with latent cluster random effects models
    • P.N.KrivitskyM.S.HandcockA.E.RafteryP.D.Hoff (2009) Representing degree distributions, clustering, and homophily in social networks with latent cluster random effects models. Social Networks, 31, 204–13.
    • (2009) Social Networks , vol.31 , pp. 204-213
    • Krivitsky, P.N.1    Handcock, M.S.2    Raftery, A.E.3    Hoff, P.D.4
  • 29
    • 84855995641 scopus 로고    scopus 로고
    • Overlapping stochastic block models with application to the french political blogosphere
    • 5
    • P.LatoucheE.BirmeléC.Ambroise (2011) Overlapping stochastic block models with application to the french political blogosphere.Annals of Applied Statistics, 5, 309–36.
    • (2011) Annals of Applied Statistics , pp. 309-336
    • Latouche, P.1    Birmelé, E.2    Ambroise, C.3
  • 30
    • 84859344722 scopus 로고    scopus 로고
    • Variational bayesian inference and complexity control for stochastic block models
    • LatoucheE.BirmeléC.Ambroise (2012) Variational bayesian inference and complexity control for stochastic block models.Statistical Modelling, 12, 93–115.
    • (2012) Statistical Modelling , vol.12 , pp. 93-115
    • Latouche1    Birmelé, E.2    Ambroise, C.3
  • 31
    • 78751700989 scopus 로고    scopus 로고
    • Uncovering latent structure in valued graphs: A variational approach
    • M.MariadassouS.RobinC.Vacher (2010) Uncovering latent structure in valued graphs: A variational approach. Annals of Applied Statistics, 4, 715–42.
    • (2010) Annals of Applied Statistics , vol.4 , pp. 715-742
    • Mariadassou, M.1    Robin, S.2    Vacher, C.3
  • 32
    • 84871763700 scopus 로고    scopus 로고
    • Improved Bayesian inference for the stochastic block model with application to large networks
    • A.Mc DaidT.N.F.MurphyN.Hurley (2013) Improved Bayesian inference for the stochastic block model with application to large networks. Computational Statistics and Data Analysis, 60, 12–31.
    • (2013) Computational Statistics and Data Analysis , vol.60 , pp. 12-31
    • Mc Daid, A.1    Murphy, T.N.F.2    Hurley, N.3
  • 36
    • 42749100809 scopus 로고    scopus 로고
    • Fast algorithm for detecting community structure in networks
    • M.E.J.Newman (2004) Fast algorithm for detecting community structure in networks. Physical Review Letter E, 69, 0066133.
    • (2004) Physical Review Letter E , vol.69 , pp. 0066133
    • Newman, M.E.J.1
  • 38
    • 34249673263 scopus 로고    scopus 로고
    • Bayesian finite mixtures with an unknown number of components: the allocation sampler
    • A.NobileA.Fearnside (2007) Bayesian finite mixtures with an unknown number of components: the allocation sampler. Statistics and Computing, 17, 147–62.
    • (2007) Statistics and Computing , vol.17 , pp. 147-162
    • Nobile, A.1    Fearnside, A.2
  • 40
    • 34247223815 scopus 로고    scopus 로고
    • Quantifying social group evolution
    • G.PallaA.BarabásiT.Vicsek (2007) Quantifying social group evolution.Nature, 446, 664–67.
    • (2007) Nature , vol.446 , pp. 664-667
    • Palla, G.1    Barabási, A.2    Vicsek, T.3
  • 41
    • 0034244751 scopus 로고    scopus 로고
    • Normalized cuts and image segmentation
    • J.ShiJ.Malik (2000) Normalized cuts and image segmentation. IEEE Transactions on PAMI, 22, 888–905.
    • (2000) IEEE Transactions on PAMI , vol.22 , pp. 888-905
    • Shi, J.1    Malik, J.2
  • 42
    • 78649420560 scopus 로고    scopus 로고
    • Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance
    • N.X.VinhJ.Epps (2010) Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance. Journal of Machine Learning Research, 11, 2837–54.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 2837-2854
    • Vinh, N.X.1    Epps, J.2
  • 43
    • 0032482432 scopus 로고    scopus 로고
    • Collective dynamics of small-world networks
    • D.J.WattsS.H.Strogatz (1998) Collective dynamics of small-world networks. Nature, 393, 440–42.
    • (1998) Nature , vol.393 , pp. 440-442
    • Watts, D.J.1    Strogatz, S.H.2
  • 44
    • 84925899978 scopus 로고
    • Social structure from multiple networks
    • I. Blockmodels of roles and positions
    • H.WhiteS.BoormanR.Breiger (1976) Social structure from multiple networks. I. Blockmodels of roles and positions. American Journal of Sociology, 81, 730–80.
    • (1976) American Journal of Sociology , vol.81 , pp. 730-780
    • White, H.1    Boorman, S.2    Breiger, R.3
  • 46
    • 49749086479 scopus 로고    scopus 로고
    • Fast online graph clustering via Erdos–Renyi mixture
    • H.ZanghiC.AmbroiseV.Miele (2008) Fast online graph clustering via Erdos–Renyi mixture. Pattern Recognition, 41, 3592–99.
    • (2008) Pattern Recognition , vol.41 , pp. 3592-3599
    • Zanghi, H.1    Ambroise, C.2    Miele, V.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.