메뉴 건너뛰기




Volumn 60, Issue 1, 2013, Pages 12-31

Improved Bayesian inference for the stochastic block model with application to large networks

Author keywords

Blockmodeling; Clustering; Computational statistics; MCMC; Social networks

Indexed keywords

BLOCKMODELING; CLUSTERING; COMPUTATIONAL STATISTICS; MCMC; SOCIAL NETWORKS;

EID: 84871763700     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2012.10.021     Document Type: Article
Times cited : (79)

References (29)
  • 2
    • 75849140057 scopus 로고    scopus 로고
    • A nonparametric view of network models and Newman-Girvan and other modularities
    • P.J. Bickel, and A. Chen A nonparametric view of network models and Newman-Girvan and other modularities Proceedings of the National Academy of Sciences 106 2009 21068 21073
    • (2009) Proceedings of the National Academy of Sciences , vol.106 , pp. 21068-21073
    • Bickel, P.J.1    Chen, A.2
  • 6
    • 0030269239 scopus 로고    scopus 로고
    • Exact colorations of graphs and digraphs
    • M. Everett Exact colorations of graphs and digraphs Social Networks 18 1996 319 331
    • (1996) Social Networks , vol.18 , pp. 319-331
    • Everett, M.1
  • 7
    • 74049087026 scopus 로고    scopus 로고
    • Community detection in graphs
    • S. Fortunato Community detection in graphs Physics Reports 486 2010 75 174
    • (2010) Physics Reports , vol.486 , pp. 75-174
    • Fortunato, S.1
  • 10
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    • P.J. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination Biometrika 82 1995 711 732
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.J.1
  • 12
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • W.K. Hastings Monte Carlo sampling methods using Markov chains and their applications Biometrika 57 1970 97 109
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 15
    • 79951710564 scopus 로고    scopus 로고
    • Stochastic blockmodels and community structure in networks
    • B. Karrer, and M.E.J. Newman Stochastic blockmodels and community structure in networks Physical Review E 83 2011 016107+
    • (2011) Physical Review e , vol.83
    • Karrer, B.1    Newman, M.E.J.2
  • 17
    • 84859344722 scopus 로고    scopus 로고
    • Variational Bayesian inference and complexity control for stochastic block models
    • P. Latouche, E. Birmele, and C. Ambroise Variational Bayesian inference and complexity control for stochastic block models Statistical Modelling 12 2012 93 115
    • (2012) Statistical Modelling , vol.12 , pp. 93-115
    • Latouche, P.1    Birmele, E.2    Ambroise, C.3
  • 18
    • 79951870792 scopus 로고
    • The collapsed Gibbs sampler in Bayesian computations with applications to a gene regulation problem
    • J.S. Liu The collapsed Gibbs sampler in Bayesian computations with applications to a gene regulation problem Journal of the American Statistical Association 89 1994 958 966
    • (1994) Journal of the American Statistical Association , vol.89 , pp. 958-966
    • Liu, J.S.1
  • 19
    • 78751700989 scopus 로고    scopus 로고
    • Uncovering latent structure in valued graphs: A variational approach
    • M. Mariadassou, S. Robin, and C. Vacher Uncovering latent structure in valued graphs: a variational approach The Annals of Applied Statistics 4 2010 715 742
    • (2010) The Annals of Applied Statistics , vol.4 , pp. 715-742
    • Mariadassou, M.1    Robin, S.2    Vacher, C.3
  • 21
    • 42749100809 scopus 로고    scopus 로고
    • Fast algorithm for detecting community structure in networks
    • M.E.J. Newman Fast algorithm for detecting community structure in networks Physical Review E 69 2004 066133+
    • (2004) Physical Review e , vol.69
    • Newman, M.E.J.1
  • 22
    • 37649028224 scopus 로고    scopus 로고
    • Finding and evaluating community structure in networks
    • M.E.J. Newman, and M. Girvan Finding and evaluating community structure in networks Physical Review E 69 2004 026113+
    • (2004) Physical Review e , vol.69
    • Newman, M.E.J.1    Girvan, M.2
  • 24
    • 34249673263 scopus 로고    scopus 로고
    • Bayesian finite mixtures with an unknown number of components: The allocation sampler
    • A. Nobile, and A. Fearnside Bayesian finite mixtures with an unknown number of components: the allocation sampler Statistics and Computing 17 2007 147 162
    • (2007) Statistics and Computing , vol.17 , pp. 147-162
    • Nobile, A.1    Fearnside, A.2
  • 26
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G. Schwarz Estimating the dimension of a model The Annals of Statistics 6 1978 461 464
    • (1978) The Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 27
    • 0031495186 scopus 로고    scopus 로고
    • Estimation and prediction for stochastic blockmodels for graphs with latent block structure
    • T.A.B. Snijders, and K. Nowicki Estimation and prediction for stochastic blockmodels for graphs with latent block structure Journal of Classification 14 1997 75 100
    • (1997) Journal of Classification , vol.14 , pp. 75-100
    • Snijders, T.A.B.1    Nowicki, K.2
  • 28
    • 81955160875 scopus 로고    scopus 로고
    • Block clustering with collapsed latent block models
    • J. Wyse, and N. Friel Block clustering with collapsed latent block models Statistics and Computing 22 2012 415 428
    • (2012) Statistics and Computing , vol.22 , pp. 415-428
    • Wyse, J.1    Friel, N.2
  • 29
    • 49749086479 scopus 로고    scopus 로고
    • Fast online graph clustering via Erds-Rényi mixture
    • H. Zanghi, C. Ambroise, and V. Miele Fast online graph clustering via Erds-Rényi mixture Pattern Recognition 41 2008 3592 3599
    • (2008) Pattern Recognition , vol.41 , pp. 3592-3599
    • Zanghi, H.1    Ambroise, C.2    Miele, V.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.