메뉴 건너뛰기




Volumn 11, Issue 1, 2011, Pages 57-74

The noise cluster model, a greedy solution to the network community extraction problem

Author keywords

Community extraction; Graph clustering; Noise cluster model; Semi supervised

Indexed keywords

COMMUNITY SIZE; EXTRACTION PROCESS; GENERATIVE MODEL; GRAPH CLUSTERING; GRAPH SIZES; MODEL PARAMETERS; NETWORK COMMUNITIES; NOISE CLUSTER; ON-LINE ESTIMATION; SEMI-SUPERVISED;

EID: 84863639574     PISSN: 1630649X     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (1)

References (24)
  • 3
    • 31944432114 scopus 로고    scopus 로고
    • A local method for detecting communities. Physical Review E, Statistical
    • J.P. Bagrow, E.M. Bollt. A local method for detecting communities. Physical Review E, Statistical, Nonlinear and Soft Matter Physics, 72(4):046108, 2005.
    • (2005) Nonlinear and Soft Matter Physics , vol.72 , Issue.4 , pp. 046108
    • Bagrow, J.P.1    Bollt, E.M.2
  • 5
    • 33745790274 scopus 로고    scopus 로고
    • Graph mining: Laws, generators, and algorithms
    • D. Chakrabarti, C. Faloutsos. Graph mining: Laws, generators, and algorithms. ACM Computing Surveys, 38(1), 2006.
    • (2006) ACM Computing Surveys , vol.38 , Issue.1
    • Chakrabarti, D.1    Faloutsos, C.2
  • 8
    • 0036497195 scopus 로고    scopus 로고
    • Self-organization and identification of web communities
    • G. Flake, S. Lawrence, C. Lee Giles F. Coetzee. Self-organization and identification of web communities. Computer, 35(3):66-71, March 2002.
    • (2002) Computer , vol.35 , Issue.3 , pp. 66-71
    • Flake, G.1    Lawrence, S.2    Lee Giles, C.3    Coetzee, F.4
  • 9
    • 74049087026 scopus 로고    scopus 로고
    • Community detection in graphs
    • S. Fortunato. Community detection in graphs. Physics Reports, 486(3-5):75-174, 2010.
    • (2010) Physics Reports , vol.486 , Issue.3-5 , pp. 75-174
    • Fortunato, S.1
  • 14
    • 0037345719 scopus 로고    scopus 로고
    • Subnetwork hierarchies of biochemical pathways
    • P. Holme, M. Husset, H. Jeong. Subnetwork hierarchies of biochemical pathways. Bioinformatics, 19:532-538, 2003.
    • (2003) Bioinformatics , vol.19 , pp. 532-538
    • Holme, P.1    Husset, M.2    Jeong, H.3
  • 19
    • 8544223537 scopus 로고    scopus 로고
    • Hierarchical thinking in network biology: The unbiased modularization of biochemical networks
    • J.A. Papin, J.L. Reed, B.O. Palsson. Hierarchical thinking in network biology: the unbiased modularization of biochemical networks. Trends Biochemical Sciences, 29:641-647, 2004.
    • (2004) Trends Biochemical Sciences , vol.29 , pp. 641-647
    • Papin, J.A.1    Reed, J.L.2    Palsson, B.O.3
  • 20
  • 21
    • 0031495186 scopus 로고    scopus 로고
    • Estimation and prediction for stochastic block-structures for graphs with latent block structure
    • T. Snijders et K. Nowicki. Estimation and prediction for stochastic block-structures for graphs with latent block structure. Journal of Classification, 14:75-100, 1997.
    • (1997) Journal of Classification , vol.14 , pp. 75-100
    • Snijders, T.1    Nowicki, K.2
  • 23
    • 49749086479 scopus 로고    scopus 로고
    • Fast online graph clustering via erdos-renyi mixture
    • December
    • H. Zanghi, C. Ambroise, V. Miele. Fast online graph clustering via erdos-renyi mixture. Pattern Recognition, 41(12):3592-3599, December 2008.
    • (2008) Pattern Recognition , vol.41 , Issue.12 , pp. 3592-3599
    • Zanghi, H.1    Ambroise, C.2    Miele, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.