메뉴 건너뛰기




Volumn 4, Issue 2, 2010, Pages 687-714

Strategies for online inference of model-based clustering in large and growing networks

Author keywords

EM Algorithms; Graph clustering; Online strategies; Web graph structure analysis

Indexed keywords


EID: 78751704008     PISSN: 19326157     EISSN: 19417330     Source Type: Journal    
DOI: 10.1214/10-AOAS359     Document Type: Article
Times cited : (21)

References (34)
  • 5
    • 75849140057 scopus 로고    scopus 로고
    • A nonparametric view of network models and Newman-Girvan and other modularities
    • Bickel, P. and Chen, A. (2009). A nonparametric view of network models and Newman-Girvan and other modularities. Proc. Natl. Acad. Sci. USA 10621068-21073.
    • (2009) Proc. Natl. Acad. Sci. USA , pp. 10621068-21073
    • Bickel, P.1    Chen, A.2
  • 7
    • 0001626339 scopus 로고
    • A Classification EM algorithm for clustering and two stochastic versions
    • Celeux, G. and Govaert, G. (1992). A Classification EM algorithm for clustering and two stochastic versions. Comput. Statist. Data Anal. 14 315-332.
    • (1992) Comput. Statist. Data Anal , vol.14 , pp. 315-332
    • Celeux, G.1    Govaert, G.2
  • 8
    • 84859309603 scopus 로고    scopus 로고
    • A mixture model for random graph
    • Daudin, J., Picard, F. and Robin, S. (2008). A mixture model for random graph. Statist. Comput. 18 1-36.
    • (2008) Statist. Comput , vol.18 , pp. 1-36
    • Daudin, J.1    Picard, F.2    Robin, S.3
  • 10
    • 0033243858 scopus 로고    scopus 로고
    • Convergence of a stochastic approximation version of the EM algorithm
    • Delyon, B., Lavielle, M. and Moulines, E. (1999). Convergence of a stochastic approximation version of the EM algorithm. Ann. Statist. 27 94-128.
    • (1999) Ann. Statist , vol.27 , pp. 94-128
    • Delyon, B.1    Lavielle, M.2    Moulines, E.3
  • 11
    • 0002629270 scopus 로고
    • Maximum-likelihood from incomplete data via the EM algorithm
    • Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum-likelihood from incomplete data via the EM algorithm. J. Roy. Statist. Soc. B 39 1-39.
    • (1977) J. Roy. Statist. Soc. B , vol.39 , pp. 1-39
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 13
    • 67649261238 scopus 로고    scopus 로고
    • Le Web et le traité constitutionnel européen, écologie d'une localité thématique
    • Fouetillou, G. (2007). Le Web et le traité constitutionnel européen, écologie d'une localité thématique. Réseaux 144 279-304.
    • (2007) Réseaux , vol.144 , pp. 279-304
    • Fouetillou, G.1
  • 17
    • 0033225865 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • Jordan, M., Ghahramani, Z., Jaakkola, T. and Saul, L. (1999). An introduction to variational methods for graphical models. Mach. Learn. 37 183-233.
    • (1999) Mach. Learn , vol.37 , pp. 183-233
    • Jordan, M.1    Ghahramani, Z.2    Jaakkola, T.3    Saul, L.4
  • 18
    • 4243148480 scopus 로고    scopus 로고
    • Authoritative sources in a hyperlinked environment
    • Kleinberg, J. (1999). Authoritative sources in a hyperlinked environment. J. ACM 46 604-632.
    • (1999) J. ACM , vol.46 , pp. 604-632
    • Kleinberg, J.1
  • 20
    • 26444444069 scopus 로고    scopus 로고
    • Online EM algorithm for mixture with application to internet traffic modeling
    • Liu, Z., Almhana, J., Choulakian, V. and McGorman, R. (2006). Online EM algorithm for mixture with application to internet traffic modeling. Comput. Statist. Data Anal. 50 1052-1071.
    • (2006) Comput. Statist. Data Anal , vol.50 , pp. 1052-1071
    • Liu, Z.1    Almhana, J.2    Choulakian, V.3    McGorman, R.4
  • 21
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • In, Univ. California Press, Berkeley, CA
    • MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In Proc. Fifth Berkeley Sympos. Math. Statist. Probab. 1 281-296. Univ. California Press, Berkeley, CA.
    • (1967) Proc. Fifth Berkeley Sympos. Math. Statist. Probab , vol.1 , pp. 281-296
    • McQueen, J.1
  • 22
    • 33745012299 scopus 로고    scopus 로고
    • Modularity and community structure in networks
    • Newman, M. (2006). Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 103 8577-8582.
    • (2006) Proc. Natl. Acad. Sci. USA , vol.103 , pp. 8577-8582
    • Newman, M.1
  • 23
    • 34547405111 scopus 로고    scopus 로고
    • Mixture models and exploratory analysis in networks
    • Newman, M. and Leicht, E. (2007). Mixture models and exploratory analysis in networks. Proc. Natl. Acad. Sci. USA 104 9564-9569.
    • (2007) Proc. Natl. Acad. Sci. USA , vol.104 , pp. 9564-9569
    • Newman, M.1    Leicht, E.2
  • 24
    • 84899013108 scopus 로고    scopus 로고
    • On spectral clustering: Analysis and an algorithm
    • In, MIT Press, Cambridge, MA
    • Ng, A., Jordan, M. and Weiss, Y. (2002). On spectral clustering: Analysis and an algorithm. In Neural Information Processing System 14 849-856. MIT Press, Cambridge, MA.
    • (2002) Neural Information Processing System , vol.14 , pp. 849-856
    • Ng, A.1    Jordan, M.2    Weiss, Y.3
  • 25
    • 0442296603 scopus 로고    scopus 로고
    • Estimation and prediction for stochastic blockstructures
    • Nowicki, K. and Snijders, T. A. B. (2001). Estimation and prediction for stochastic blockstructures. J. Amer. Statist. Assoc. 96 1077-1090.
    • (2001) J. Amer. Statist. Assoc , vol.96 , pp. 1077-1090
    • Nowicki, K.1    Snijders, T.A.B.2
  • 26
    • 0006885798 scopus 로고    scopus 로고
    • A Bayesian approach to online learning
    • Cambridge Univ. Press, Cambridge, MA
    • Opper, M. (1999). A Bayesian approach to online learning. On-Line Learning in Neural Networks 16 363-378. Cambridge Univ. Press, Cambridge, MA.
    • (1999) On-Line Learning in Neural Networks , vol.16 , pp. 363-378
    • Opper, M.1
  • 27
    • 67649123146 scopus 로고    scopus 로고
    • Deciphering the connectivity structure of biological networks using MixNet
    • Picard, F., Miele, V., Daudin, J., Cottret, L. and Robin, S. (2009). Deciphering the connectivity structure of biological networks using MixNet. BMC Bioinformatics 10 1-11.
    • (2009) BMC Bioinformatics , vol.10 , pp. 1-11
    • Picard, F.1    Miele, V.2    Daudin, J.3    Cottret, L.4    Robin, S.5
  • 28
    • 0016572913 scopus 로고
    • A vector space model for automatic indexing
    • Salton, G., Wong, A. and Yang, C. (1975). A vector space model for automatic indexing. Commun. ACM 18 613-620.
    • (1975) Commun. ACM , vol.18 , pp. 613-620
    • Salton, G.1    Wong, A.2    Yang, C.3
  • 31
    • 0031495186 scopus 로고    scopus 로고
    • Estimation and prediction for stochastic block-structures for graphs with latent block structure
    • Snijders, T. A. B. and Nowicki, K. (1997). Estimation and prediction for stochastic block-structures for graphs with latent block structure. J. Classification 14 75-100.
    • (1997) J. Classification , vol.14 , pp. 75-100
    • Snijders, T.A.B.1    Nowicki, K.2
  • 32
    • 0001593436 scopus 로고
    • Recursive parameter estimation using incomplete data
    • Titterington, D. M. (1984). Recursive parameter estimation using incomplete data. J. Roy. Statist. Soc. Ser. B 46 257-267.
    • (1984) J. Roy. Statist. Soc. Ser. B , vol.46 , pp. 257-267
    • Titterington, D.M.1
  • 33
    • 33749682432 scopus 로고    scopus 로고
    • Almost sure convergence of Titterington's recursive estimator for finite mixture models
    • Wang, S. and Zhao, Y. (2006). Almost sure convergence of Titterington's recursive estimator for finite mixture models. Statist. Probab. Lett. 762001-2006.
    • (2006) Statist. Probab. Lett , pp. 762001-762006
    • Wang, S.1    Zhao, Y.2
  • 34
    • 49749086479 scopus 로고    scopus 로고
    • Fast online graph clustering via Erdo{double acute}s-Rényi mixture
    • Zanghi, H., Ambroise, C. and Miele, V. (2008). Fast online graph clustering via Erdo{double acute}s-Rényi mixture. Pattern Recognition 41 3592-3599.
    • (2008) Pattern Recognition , vol.41 , pp. 3592-3599
    • Zanghi, H.1    Ambroise, C.2    Miele, V.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.