메뉴 건너뛰기




Volumn 22, Issue 1, 2016, Pages 1-23

Liquid feed passive direct methanol fuel cell: challenges and recent advances

Author keywords

Cost; Durability; Heat transfer; Liquid feed; Mass transfer; Passive direct methanol fuel cell

Indexed keywords

CARBON; CARBON DIOXIDE; COSTS; DURABILITY; FUEL CELLS; HEAT TRANSFER; LIQUIDS; MASS TRANSFER; METHANOL; METHANOL FUELS;

EID: 84953639396     PISSN: 09477047     EISSN: 18620760     Source Type: Journal    
DOI: 10.1007/s11581-015-1589-6     Document Type: Review
Times cited : (48)

References (185)
  • 1
    • 68749119434 scopus 로고    scopus 로고
    • A review on fuel cell technologies and power electronic interface
    • Kirubakaran A, Jain S, Nema RK (2009) A review on fuel cell technologies and power electronic interface. Renew Sustain Energy Rev 13:2430–2440
    • (2009) Renew Sustain Energy Rev , vol.13 , pp. 2430-2440
    • Kirubakaran, A.1    Jain, S.2    Nema, R.K.3
  • 2
    • 81855177211 scopus 로고    scopus 로고
    • Fuel cells: the expectations for an environmental-friendly and sustainable source of energy
    • Stambouli AB (2011) Fuel cells: the expectations for an environmental-friendly and sustainable source of energy. Renew Sustain Energy Rev 15:4507–4520
    • (2011) Renew Sustain Energy Rev , vol.15 , pp. 4507-4520
    • Stambouli, A.B.1
  • 3
    • 0033886152 scopus 로고    scopus 로고
    • Sustainable energy conversion: fuel cells—the competitive option?
    • Hart D (2000) Sustainable energy conversion: fuel cells—the competitive option? J Power Sources 86:23–27
    • (2000) J Power Sources , vol.86 , pp. 23-27
    • Hart, D.1
  • 4
    • 84869095686 scopus 로고    scopus 로고
    • Current status of hybrid, battery and fuel cell electric vehicles: from electrochemistry to market prospects
    • Pollet BG, Staffell I, Shang JL (2012) Current status of hybrid, battery and fuel cell electric vehicles: from electrochemistry to market prospects. Electrochim Acta 84:235–249
    • (2012) Electrochim Acta , vol.84 , pp. 235-249
    • Pollet, B.G.1    Staffell, I.2    Shang, J.L.3
  • 5
    • 82355191673 scopus 로고    scopus 로고
    • Comparative study of different fuel cell technologies
    • Mekhilef S, Saidur R, Safari A (2012) Comparative study of different fuel cell technologies. Renew Sustain Energy Rev 16:981–989
    • (2012) Renew Sustain Energy Rev , vol.16 , pp. 981-989
    • Mekhilef, S.1    Saidur, R.2    Safari, A.3
  • 6
    • 84887012531 scopus 로고    scopus 로고
    • Overview on fuel cells
    • Lucia U (2014) Overview on fuel cells. Renew Sustain Energy Rev 30:164–169
    • (2014) Renew Sustain Energy Rev , vol.30 , pp. 164-169
    • Lucia, U.1
  • 7
    • 0036591743 scopus 로고    scopus 로고
    • Fuel cell systems and system modelling and analysis perspectives for fuel cell development
    • Spakovsky MR, Olsommer B (2002) Fuel cell systems and system modelling and analysis perspectives for fuel cell development. Energy Convers Manag 43:1249–1257
    • (2002) Energy Convers Manag , vol.43 , pp. 1249-1257
    • Spakovsky, M.R.1    Olsommer, B.2
  • 8
    • 84893953706 scopus 로고    scopus 로고
    • An overview of fuel cell technology: fundamentals and applications
    • Sharaf OZ, Orhan MF (2014) An overview of fuel cell technology: fundamentals and applications. Renew Sustain Energy Rev 32:810–853
    • (2014) Renew Sustain Energy Rev , vol.32 , pp. 810-853
    • Sharaf, O.Z.1    Orhan, M.F.2
  • 9
    • 0035976479 scopus 로고    scopus 로고
    • Recent advances in fuel cell technology and its applications
    • Acres GJK (2001) Recent advances in fuel cell technology and its applications. J Power Sources 100:60–66
    • (2001) J Power Sources , vol.100 , pp. 60-66
    • Acres, G.J.K.1
  • 10
    • 84962623828 scopus 로고    scopus 로고
    • Wasewar KL: A real-time simulating non-isothermal mathematical model for the passive feed direct methanol fuel cell. Int J Green Energ
    • Shrivastava NK, Thombre SB, Wasewar KL (2014) A real-time simulating non-isothermal mathematical model for the passive feed direct methanol fuel cell. Int J Green Energ. doi:10.1080/15435075.2014.916220
    • (2014) Thombre SB
    • Shrivastava, N.K.1
  • 11
    • 64549094549 scopus 로고    scopus 로고
    • Energy and exergy analysis of a solid oxide fuel cell plant fueled by ethanol and methane
    • Douvartzides S, Coutelieris F, Tsiakaras P (2003) Energy and exergy analysis of a solid oxide fuel cell plant fueled by ethanol and methane. Ionics 9:293–296
    • (2003) Ionics , vol.9 , pp. 293-296
    • Douvartzides, S.1    Coutelieris, F.2    Tsiakaras, P.3
  • 12
    • 84931955511 scopus 로고    scopus 로고
    • The effect of pressure gradient on anode micro modeling of solid oxide fuel cell
    • Hu A, Zhou J, Chen B, Wu Y (2015) The effect of pressure gradient on anode micro modeling of solid oxide fuel cell. Ionics 21:2005–2017
    • (2015) Ionics , vol.21 , pp. 2005-2017
    • Hu, A.1    Zhou, J.2    Chen, B.3    Wu, Y.4
  • 13
    • 33645507739 scopus 로고    scopus 로고
    • Fuel quality and operational issues for polymer electrolyte membrane (PEM) fuel cells
    • Giddey S, Ciacchi FT, Badwal SPS (2005) Fuel quality and operational issues for polymer electrolyte membrane (PEM) fuel cells. Ionics 11:1–10
    • (2005) Ionics , vol.11 , pp. 1-10
    • Giddey, S.1    Ciacchi, F.T.2    Badwal, S.P.S.3
  • 14
    • 84872838079 scopus 로고    scopus 로고
    • Effect of nitrogen and carbon dioxide as fuel impurities on PEM fuel cell performances
    • Nachiappan N, ParuthimalKalaignan G, Sasikumar G (2013) Effect of nitrogen and carbon dioxide as fuel impurities on PEM fuel cell performances. Ionics 19:351–354
    • (2013) Ionics , vol.19 , pp. 351-354
    • Nachiappan, N.1    ParuthimalKalaignan, G.2    Sasikumar, G.3
  • 15
    • 84883779126 scopus 로고    scopus 로고
    • Design of novel SPEEK-based proton exchange membranes by self-assembly method for fuel cells
    • Padmavathi R, Sangeetha D (2013) Design of novel SPEEK-based proton exchange membranes by self-assembly method for fuel cells. Ionics 19:1423–1436
    • (2013) Ionics , vol.19 , pp. 1423-1436
    • Padmavathi, R.1    Sangeetha, D.2
  • 16
    • 34248585014 scopus 로고    scopus 로고
    • Direct liquid-feed fuel cells: thermodynamic and environmental concerns
    • Demirci UB (2007) Direct liquid-feed fuel cells: thermodynamic and environmental concerns. J Power Sources 169:239–246
    • (2007) J Power Sources , vol.169 , pp. 239-246
    • Demirci, U.B.1
  • 18
    • 84941942517 scopus 로고    scopus 로고
    • A technical review on gas diffusion, mechanism and medium of PEM fuel cell
    • Jayakumar A, Sethu S, Ramos M, Robertson J, Al-Jumaily A (2015) A technical review on gas diffusion, mechanism and medium of PEM fuel cell. Ionics 21:1–18
    • (2015) Ionics , vol.21 , pp. 1-18
    • Jayakumar, A.1    Sethu, S.2    Ramos, M.3    Robertson, J.4    Al-Jumaily, A.5
  • 21
    • 85035404858 scopus 로고    scopus 로고
    • Direct methanol oxidation polymer electrolyte membrane power system
    • Dine LLV, Maricle DL (1996) Direct methanol oxidation polymer electrolyte membrane power system. US Patent 5573866 A
    • (1996) US Patent 5573866 A
    • Dine, L.L.V.1    Maricle, D.L.2
  • 24
  • 25
    • 84944045051 scopus 로고    scopus 로고
    • Daud WRW: Investigating design parameter effect on the methanol flux in the passive storage of a direct methanol fuel cell. Int J Hydrogen Energ
    • Kamaruddin MZF, Kamarudin SK, Masdar MS, Daud WRW (2015) Investigating design parameter effect on the methanol flux in the passive storage of a direct methanol fuel cell. Int J Hydrogen Energ. doi:10.1016/j.ijhydene.2015.06.071
    • (2015) Masdar MS
    • Kamaruddin, M.Z.F.1    Kamarudin, S.K.2
  • 26
    • 84937243131 scopus 로고    scopus 로고
    • Development and performance analysis of a metallic passive micro-direct methanol fuel cell for portable applications
    • Falcão DS, Pereira JP, Rangel CM, Pinto AMFR (2015) Development and performance analysis of a metallic passive micro-direct methanol fuel cell for portable applications. Int J Hydrog Energy 40:5408–5415
    • (2015) Int J Hydrog Energy , vol.40 , pp. 5408-5415
    • Falcão, D.S.1    Pereira, J.P.2    Rangel, C.M.3    Pinto, A.M.F.R.4
  • 27
    • 84922001152 scopus 로고    scopus 로고
    • Effect of nano-composite on polyvinyl alcohol-based proton conducting membrane for direct methanol fuel cell applications
    • BahavanPalani P, Kannan R, Rajashabala S, Rajendran S, Velraj G (2015) Effect of nano-composite on polyvinyl alcohol-based proton conducting membrane for direct methanol fuel cell applications. Ionics 21:507–513
    • (2015) Ionics , vol.21 , pp. 507-513
    • BahavanPalani, P.1    Kannan, R.2    Rajashabala, S.3    Rajendran, S.4    Velraj, G.5
  • 28
    • 60349099411 scopus 로고    scopus 로고
    • DMFC electrode preparation, performance and proton conductivity measurements
    • Birry L, Bock C, Xue X, McMillan R, MacDougall B (2009) DMFC electrode preparation, performance and proton conductivity measurements. J Appl Electrochem 39:347–360
    • (2009) J Appl Electrochem , vol.39 , pp. 347-360
    • Birry, L.1    Bock, C.2    Xue, X.3    McMillan, R.4    MacDougall, B.5
  • 29
    • 24644468299 scopus 로고    scopus 로고
    • Direct methanol fuel cells: methanol crossover and its influence on single DMFC performance
    • Song SQ, Zhou WJ, Li WZ, Sun G, Xin Q, Kontou S, Tsiakaras P (2004) Direct methanol fuel cells: methanol crossover and its influence on single DMFC performance. Ionics 10:458–462
    • (2004) Ionics , vol.10 , pp. 458-462
    • Song, S.Q.1    Zhou, W.J.2    Li, W.Z.3    Sun, G.4    Xin, Q.5    Kontou, S.6    Tsiakaras, P.7
  • 30
    • 0036507820 scopus 로고    scopus 로고
    • The influence of electrode morphology on the performance of a DMFC anode
    • Nordlund J, Roessler A, Lindbergh G (2002) The influence of electrode morphology on the performance of a DMFC anode. J Appl Electrochem 32:259–265
    • (2002) J Appl Electrochem , vol.32 , pp. 259-265
    • Nordlund, J.1    Roessler, A.2    Lindbergh, G.3
  • 31
    • 68849106257 scopus 로고    scopus 로고
    • Overview on the application of direct methanol fuel cell (DMFC) for portable electronic devices
    • Kamarudin SK, Achmad F, Daud WRW (2009) Overview on the application of direct methanol fuel cell (DMFC) for portable electronic devices. Int J Hydrogen Energy 34:6902–6916
    • (2009) Int J Hydrogen Energy , vol.34 , pp. 6902-6916
    • Kamarudin, S.K.1    Achmad, F.2    Daud, W.R.W.3
  • 32
    • 84869888023 scopus 로고    scopus 로고
    • Review and advances of direct methanol fuel cells (DMFCs) part I: design, fabrication, and testing with high concentration methanol solutions
    • Li X, Faghri A (2013) Review and advances of direct methanol fuel cells (DMFCs) part I: design, fabrication, and testing with high concentration methanol solutions. J Power Sources 226:223–240
    • (2013) J Power Sources , vol.226 , pp. 223-240
    • Li, X.1    Faghri, A.2
  • 33
    • 84908457274 scopus 로고    scopus 로고
    • Effect of diffusion layer compression on passive DMFC performance
    • Shrivastava NK, Thombre SB, Mallick RK (2014) Effect of diffusion layer compression on passive DMFC performance. Electrochim Acta 149:167–175
    • (2014) Electrochim Acta , vol.149 , pp. 167-175
    • Shrivastava, N.K.1    Thombre, S.B.2    Mallick, R.K.3
  • 34
    • 84896285394 scopus 로고    scopus 로고
    • Nonisothermal mathematical model for performance evaluation of passive direct methanol fuel cells
    • Shrivastava NK, Thombre SB, Wasewar KL (2013) Nonisothermal mathematical model for performance evaluation of passive direct methanol fuel cells. Journal of Energy Engineering 139:266–274
    • (2013) Journal of Energy Engineering , vol.139 , pp. 266-274
    • Shrivastava, N.K.1    Thombre, S.B.2    Wasewar, K.L.3
  • 35
    • 84925781836 scopus 로고    scopus 로고
    • A critical review of the current collector for passive direct methanol fuel cells
    • Mallick RK, Thombre SB, Shrivastava NK (2015) A critical review of the current collector for passive direct methanol fuel cells. J Power Sources 285:510–529
    • (2015) J Power Sources , vol.285 , pp. 510-529
    • Mallick, R.K.1    Thombre, S.B.2    Shrivastava, N.K.3
  • 36
    • 84941939584 scopus 로고    scopus 로고
    • Experimental studying of the effect of active area on the performance of passive direct methanol fuel cell. Ionics
    • Hashemi R, Yousefi S, Faraji M (2015) Experimental studying of the effect of active area on the performance of passive direct methanol fuel cell. Ionics. doi:10.1007/s11581-015-1479-y
    • (2015) doi:10.1007/s11581-015-1479-y
    • Hashemi, R.1    Yousefi, S.2    Faraji, M.3
  • 37
    • 84885607759 scopus 로고    scopus 로고
    • The effect of cell orientations and environmental conditions on the performance of a passive DMFC single cell
    • Yousefi S, Shakeri M, Sedighi K (2013) The effect of cell orientations and environmental conditions on the performance of a passive DMFC single cell. Ionics 19:1637–1647
    • (2013) Ionics , vol.19 , pp. 1637-1647
    • Yousefi, S.1    Shakeri, M.2    Sedighi, K.3
  • 38
    • 84880818616 scopus 로고    scopus 로고
    • Investigating the effect of operating parameters on the open circuit voltage of a passive DMFC
    • Yousefi S, Zohoor M (2013) Investigating the effect of operating parameters on the open circuit voltage of a passive DMFC. Ionics 19:1195–1201
    • (2013) Ionics , vol.19 , pp. 1195-1201
    • Yousefi, S.1    Zohoor, M.2
  • 39
    • 84868323286 scopus 로고    scopus 로고
    • 2 active areas
    • Yousefi S, Ganji DD (2012) Experimental investigation of a passive direct methanol fuel cell with 100 cm2 active areas. Electrochim Acta 85:693–699
    • (2012) Electrochim Acta , vol.85 , pp. 693-699
    • Yousefi, S.1    Ganji, D.D.2
  • 40
    • 84897411520 scopus 로고    scopus 로고
    • Conceptual design and statistical overview on the design of a passive DMFC single cell
    • Yousefi S, Zohoor M (2014) Conceptual design and statistical overview on the design of a passive DMFC single cell. Int J Hydrogen Energy 39:5972–5980
    • (2014) Int J Hydrogen Energy , vol.39 , pp. 5972-5980
    • Yousefi, S.1    Zohoor, M.2
  • 41
    • 0032650642 scopus 로고    scopus 로고
    • Engineering aspects of the direct methanol fuel cell system
    • Scott K, Taama WM, Argyropoulos P (1999) Engineering aspects of the direct methanol fuel cell system. J Power Sources 79:43–59
    • (1999) J Power Sources , vol.79 , pp. 43-59
    • Scott, K.1    Taama, W.M.2    Argyropoulos, P.3
  • 42
    • 84897406661 scopus 로고    scopus 로고
    • Overview on the developments of vapor-feed direct methanol fuel cells
    • Yuan W, Zhou B, Deng J, Tang Y, Zhang Z, Li Z (2014) Overview on the developments of vapor-feed direct methanol fuel cells. Int J Hydrogen Energy 39:6689–6704
    • (2014) Int J Hydrogen Energy , vol.39 , pp. 6689-6704
    • Yuan, W.1    Zhou, B.2    Deng, J.3    Tang, Y.4    Zhang, Z.5    Li, Z.6
  • 43
    • 84867702051 scopus 로고    scopus 로고
    • Recent advances in passive and semi passive direct methanol fuel cells
    • Faghri A, Li X, Bahrami H (2012) Recent advances in passive and semi passive direct methanol fuel cells. Int J Thermal Sciences 62:12–18
    • (2012) Int J Thermal Sciences , vol.62 , pp. 12-18
    • Faghri, A.1    Li, X.2    Bahrami, H.3
  • 44
    • 36348959672 scopus 로고    scopus 로고
    • Two-dimensional two-phase thermal model for passive direct methanol fuel cells
    • Chen R, Zhao TS, Yang WW, Xu C (2008) Two-dimensional two-phase thermal model for passive direct methanol fuel cells. J Power Sources 175:276–287
    • (2008) J Power Sources , vol.175 , pp. 276-287
    • Chen, R.1    Zhao, T.S.2    Yang, W.W.3    Xu, C.4
  • 45
    • 79551534482 scopus 로고    scopus 로고
    • Passive direct methanol fuel cells for portable electronic devices
    • Achmad F, Kamarudin SK, Daud WRW, Majlan EH (2011) Passive direct methanol fuel cells for portable electronic devices. Applied Energy 88:1681–1689
    • (2011) Applied Energy , vol.88 , pp. 1681-1689
    • Achmad, F.1    Kamarudin, S.K.2    Daud, W.R.W.3    Majlan, E.H.4
  • 46
    • 84907277111 scopus 로고    scopus 로고
    • Wire mesh current collectors for passive direct methanol fuel cells
    • Shrivastava NK, Thombre SB, Motghare RV (2014) Wire mesh current collectors for passive direct methanol fuel cells. J Power Sources 272:629–638
    • (2014) J Power Sources , vol.272 , pp. 629-638
    • Shrivastava, N.K.1    Thombre, S.B.2    Motghare, R.V.3
  • 48
    • 71249154775 scopus 로고    scopus 로고
    • Vertical operation of passive direct methanol fuel cell employing a porous carbon plate
    • Abdelkareem MA, Yoshitoshi T, Tsujiguchi T, Nakagawa N (2010) Vertical operation of passive direct methanol fuel cell employing a porous carbon plate. J Power Sources 195:1821–1828
    • (2010) J Power Sources , vol.195 , pp. 1821-1828
    • Abdelkareem, M.A.1    Yoshitoshi, T.2    Tsujiguchi, T.3    Nakagawa, N.4
  • 49
    • 77954715722 scopus 로고    scopus 로고
    • Water management of the DMFC passively fed with a high-concentration methanol solution
    • Li X, Faghri A, Xu C (2010) Water management of the DMFC passively fed with a high-concentration methanol solution. Int J Hydrogen Energy 35:8690–8698
    • (2010) Int J Hydrogen Energy , vol.35 , pp. 8690-8698
    • Li, X.1    Faghri, A.2    Xu, C.3
  • 50
    • 33748426911 scopus 로고    scopus 로고
    • Control of methanol transport and separation in a DMFC with a porous support
    • Nakagawa N, Abdelkareem MA, Sekimoto K (2006) Control of methanol transport and separation in a DMFC with a porous support. J Power Sources 160:105–115
    • (2006) J Power Sources , vol.160 , pp. 105-115
    • Nakagawa, N.1    Abdelkareem, M.A.2    Sekimoto, K.3
  • 51
    • 33749999992 scopus 로고    scopus 로고
    • DMFC employing a porous plate for an efficient operation at high methanol concentrations
    • Abdelkareem MA, Nakagawa N (2006) DMFC employing a porous plate for an efficient operation at high methanol concentrations. J Power Sources 162:114–123
    • (2006) J Power Sources , vol.162 , pp. 114-123
    • Abdelkareem, M.A.1    Nakagawa, N.2
  • 52
    • 77949903618 scopus 로고    scopus 로고
    • A micro fluidic-structured flow field for passive direct methanol fuel cells operating with highly concentrated fuels
    • Wu QX, Zhao TS, Chen R, Yang WW (2010) A micro fluidic-structured flow field for passive direct methanol fuel cells operating with highly concentrated fuels. J Micromech Microeng 20:0450141–0450149
    • (2010) J Micromech Microeng , vol.20 , pp. 0450141-0450149
    • Wu, Q.X.1    Zhao, T.S.2    Chen, R.3    Yang, W.W.4
  • 53
    • 80052603347 scopus 로고    scopus 로고
    • Design of a MEA with multi-layer electrodes for high concentration methanol DMFCs
    • Park YC, Kim DH, Lim S, Kim SK, Peck DH, Jung DH (2012) Design of a MEA with multi-layer electrodes for high concentration methanol DMFCs. Int J Hydrogen Energy 37:4717–4727
    • (2012) Int J Hydrogen Energy , vol.37 , pp. 4717-4727
    • Park, Y.C.1    Kim, D.H.2    Lim, S.3    Kim, S.K.4    Peck, D.H.5    Jung, D.H.6
  • 54
    • 84865529584 scopus 로고    scopus 로고
    • Toward using porous metal-fiber sintered plate as anodic methanol barrier in a passive direct methanol fuel cell
    • Yuan W, Tang Y, Yang X, Wan Z (2012) Toward using porous metal-fiber sintered plate as anodic methanol barrier in a passive direct methanol fuel cell. Int J Hydrogen Energy 37:13510–13521
    • (2012) Int J Hydrogen Energy , vol.37 , pp. 13510-13521
    • Yuan, W.1    Tang, Y.2    Yang, X.3    Wan, Z.4
  • 55
    • 84866010104 scopus 로고    scopus 로고
    • High-concentration operation of a passive air-breathing direct methanol fuel cell integrated with a porous methanol barrier
    • Yuan W, Tang Y, Yang X (2013) High-concentration operation of a passive air-breathing direct methanol fuel cell integrated with a porous methanol barrier. Renew Energy 50:741–746
    • (2013) Renew Energy , vol.50 , pp. 741-746
    • Yuan, W.1    Tang, Y.2    Yang, X.3
  • 56
    • 84884244328 scopus 로고    scopus 로고
    • Study on operational aspects of a passive direct methanol fuel cell incorporating an anodic methanol barrier
    • Yuan W, Deng J, Zhang Z, Yang X, Tang Y (2014) Study on operational aspects of a passive direct methanol fuel cell incorporating an anodic methanol barrier. Renew Energy 62:640–648
    • (2014) Renew Energy , vol.62 , pp. 640-648
    • Yuan, W.1    Deng, J.2    Zhang, Z.3    Yang, X.4    Tang, Y.5
  • 57
    • 46049091054 scopus 로고    scopus 로고
    • Thermal and start-up characteristics of a miniature passive liquid feed DMFC system, including continuous/discontinuous phase limitations
    • Rice J, Faghri A (2008) Thermal and start-up characteristics of a miniature passive liquid feed DMFC system, including continuous/discontinuous phase limitations. J Heat Transfer 130:6200101–6200111
    • (2008) J Heat Transfer , vol.130 , pp. 6200101-6200111
    • Rice, J.1    Faghri, A.2
  • 58
    • 50949093844 scopus 로고    scopus 로고
    • Carbon dioxide vent for direct methanol fuel cells
    • Prakash S, Mustain W, Kohl PA (2008) Carbon dioxide vent for direct methanol fuel cells. J Power Sources 185:392–400
    • (2008) J Power Sources , vol.185 , pp. 392-400
    • Prakash, S.1    Mustain, W.2    Kohl, P.A.3
  • 59
    • 66349123118 scopus 로고    scopus 로고
    • Performance of carbon dioxide vent for direct methanol fuel cells
    • Prakash S, Kohl PA (2009) Performance of carbon dioxide vent for direct methanol fuel cells. J Power Sources 192:429–434
    • (2009) J Power Sources , vol.192 , pp. 429-434
    • Prakash, S.1    Kohl, P.A.2
  • 60
    • 13644265597 scopus 로고    scopus 로고
    • The effect of methanol concentration on the performance of a passive DMFC
    • Liu JG, Zhao TS, Chen R, Wong CW (2005) The effect of methanol concentration on the performance of a passive DMFC. Electrochem Commun 7:288–294
    • (2005) Electrochem Commun , vol.7 , pp. 288-294
    • Liu, J.G.1    Zhao, T.S.2    Chen, R.3    Wong, C.W.4
  • 61
    • 74449084246 scopus 로고    scopus 로고
    • Methanol and water crossover in a passive liquid-feed direct methanol fuel cell
    • Xu C, Faghri A, Li X, Ward T (2010) Methanol and water crossover in a passive liquid-feed direct methanol fuel cell. Int J Hydrogen Energy 35:1769–1777
    • (2010) Int J Hydrogen Energy , vol.35 , pp. 1769-1777
    • Xu, C.1    Faghri, A.2    Li, X.3    Ward, T.4
  • 62
    • 57649186959 scopus 로고    scopus 로고
    • Influence of methanol crossover on the fuel utilization of passive direct methanol fuel cell
    • Lai QZ, Yin GP, Wang ZB, Du CY, Zuo PJ, Cheng XQ (2008) Influence of methanol crossover on the fuel utilization of passive direct methanol fuel cell. Fuel Cells 8:399–403
    • (2008) Fuel Cells , vol.8 , pp. 399-403
    • Lai, Q.Z.1    Yin, G.P.2    Wang, Z.B.3    Du, C.Y.4    Zuo, P.J.5    Cheng, X.Q.6
  • 63
    • 65549096166 scopus 로고    scopus 로고
    • Optimization of water and air management systems for a passive direct methanol fuel cell
    • Jewett G, Faghri A, Xiao B (2009) Optimization of water and air management systems for a passive direct methanol fuel cell. Int J Heat and Mass Transfer 52:3564–3575
    • (2009) Int J Heat and Mass Transfer , vol.52 , pp. 3564-3575
    • Jewett, G.1    Faghri, A.2    Xiao, B.3
  • 64
    • 33750364975 scopus 로고    scopus 로고
    • A transient, multi-phase and multi-component model of a new passive DMFC
    • Rice J, Faghri A (2006) A transient, multi-phase and multi-component model of a new passive DMFC. Int J Heat and Mass Transfer 49:4804–4820
    • (2006) Int J Heat and Mass Transfer , vol.49 , pp. 4804-4820
    • Rice, J.1    Faghri, A.2
  • 65
    • 30144439287 scopus 로고    scopus 로고
    • Effect of membrane thickness on the performance and efficiency of passive direct methanol fuel cells
    • Liu JG, Zhao TS, Liang ZX, Chen R (2006) Effect of membrane thickness on the performance and efficiency of passive direct methanol fuel cells. J Power Sources 153:61–67
    • (2006) J Power Sources , vol.153 , pp. 61-67
    • Liu, J.G.1    Zhao, T.S.2    Liang, Z.X.3    Chen, R.4
  • 66
    • 33847390669 scopus 로고    scopus 로고
    • Porous current collectors for passive direct methanol fuel cells
    • Chen R, Zhao TS (2007) Porous current collectors for passive direct methanol fuel cells. Electrochim Acta 52:4317–4324
    • (2007) Electrochim Acta , vol.52 , pp. 4317-4324
    • Chen, R.1    Zhao, T.S.2
  • 67
    • 84874649316 scopus 로고    scopus 로고
    • Effect of non-uniform parallel channel on performance of passive direct methanol fuel cell
    • Gholami O, Imen SJ, Shakeri M (2013) Effect of non-uniform parallel channel on performance of passive direct methanol fuel cell. Int J Hydrogen Energy 38:3395–3400
    • (2013) Int J Hydrogen Energy , vol.38 , pp. 3395-3400
    • Gholami, O.1    Imen, S.J.2    Shakeri, M.3
  • 68
    • 84857405504 scopus 로고    scopus 로고
    • Cathode catalyst layer with stepwise hydrophobicity distribution for a passive direct methanol fuel cell
    • Chen M, Chen J, Li Y, Huang Q, Zhang H, Xue X, Zou Z, Yang H (2012) Cathode catalyst layer with stepwise hydrophobicity distribution for a passive direct methanol fuel cell. Energy Fuel 26:1178–1184
    • (2012) Energy Fuel , vol.26 , pp. 1178-1184
    • Chen, M.1    Chen, J.2    Li, Y.3    Huang, Q.4    Zhang, H.5    Xue, X.6    Zou, Z.7    Yang, H.8
  • 69
    • 84899580066 scopus 로고    scopus 로고
    • Elimination of water flooding of cathode current collector of micro passive direct methanol fuel cell by superhydrophilic surface treatment
    • Wang Z, Zhang X, Nie L, Zhang Y, Liu X (2014) Elimination of water flooding of cathode current collector of micro passive direct methanol fuel cell by superhydrophilic surface treatment. Applied Energy 126:107–112
    • (2014) Applied Energy , vol.126 , pp. 107-112
    • Wang, Z.1    Zhang, X.2    Nie, L.3    Zhang, Y.4    Liu, X.5
  • 70
    • 70349211582 scopus 로고    scopus 로고
    • Design, fabrication and testing of a PMMA-based passive single-cell and a multi-cell stack micro-DMFC
    • Hashim N, Kamarudin SK, Daud WRW (2009) Design, fabrication and testing of a PMMA-based passive single-cell and a multi-cell stack micro-DMFC. Int J Hydrogen Energy 34:8263–8269
    • (2009) Int J Hydrogen Energy , vol.34 , pp. 8263-8269
    • Hashim, N.1    Kamarudin, S.K.2    Daud, W.R.W.3
  • 71
    • 36348999846 scopus 로고    scopus 로고
    • Influence of cathode oxygen transport on the discharging time of passive DMFC
    • Lai QZ, Yin GP, Zhang J, Wang ZB, Cai KD, Liu P (2008) Influence of cathode oxygen transport on the discharging time of passive DMFC. J Power Sources 175:458–463
    • (2008) J Power Sources , vol.175 , pp. 458-463
    • Lai, Q.Z.1    Yin, G.P.2    Zhang, J.3    Wang, Z.B.4    Cai, K.D.5    Liu, P.6
  • 72
    • 39149094265 scopus 로고    scopus 로고
    • A small mono-polar direct methanol fuel cell stack with passive operation
    • Chan YH, Zhao TS, Chen R, Xu C (2008) A small mono-polar direct methanol fuel cell stack with passive operation. J Power Sources 178:118–124
    • (2008) J Power Sources , vol.178 , pp. 118-124
    • Chan, Y.H.1    Zhao, T.S.2    Chen, R.3    Xu, C.4
  • 73
    • 84875392695 scopus 로고    scopus 로고
    • Three-dimensional transient modeling and analysis of two-phase mass transfer in air-breathing cathode of a fuel cell
    • Guo H, Chen YP, Xue YQ, Ye F, Ma CF (2013) Three-dimensional transient modeling and analysis of two-phase mass transfer in air-breathing cathode of a fuel cell. Int J Hydrogen Energy 38:11028–11037
    • (2013) Int J Hydrogen Energy , vol.38 , pp. 11028-11037
    • Guo, H.1    Chen, Y.P.2    Xue, Y.Q.3    Ye, F.4    Ma, C.F.5
  • 74
    • 77649192791 scopus 로고    scopus 로고
    • Transport phenomena in a semi-passive direct methanol fuel cell
    • Bahrami H, Faghri A (2010) Transport phenomena in a semi-passive direct methanol fuel cell. Int J Heat and Mass Transfer 53:2563–2578
    • (2010) Int J Heat and Mass Transfer , vol.53 , pp. 2563-2578
    • Bahrami, H.1    Faghri, A.2
  • 75
    • 64749110701 scopus 로고    scopus 로고
    • Mass transport phenomena in direct methanol fuel cells
    • Zhao TS, Xu C, Chen R, Yang WW (2009) Mass transport phenomena in direct methanol fuel cells. Int J Hydrog Energy 35:275–292
    • (2009) Int J Hydrog Energy , vol.35 , pp. 275-292
    • Zhao, T.S.1    Xu, C.2    Chen, R.3    Yang, W.W.4
  • 76
    • 76749159368 scopus 로고    scopus 로고
    • Water transport characteristics in a passive liquid-feed DMFC
    • Xu C, Faghri A (2010) Water transport characteristics in a passive liquid-feed DMFC. Int J Heat Mass Transfer 53:1951–1966
    • (2010) Int J Heat Mass Transfer , vol.53 , pp. 1951-1966
    • Xu, C.1    Faghri, A.2
  • 77
    • 80052030484 scopus 로고    scopus 로고
    • One-dimensional and non-isothermal model for a passive DMFC
    • Oliveira VB, Rangel CM, Pinto AMFR (2011) One-dimensional and non-isothermal model for a passive DMFC. J Power Sources 196:8973–8982
    • (2011) J Power Sources , vol.196 , pp. 8973-8982
    • Oliveira, V.B.1    Rangel, C.M.2    Pinto, A.M.F.R.3
  • 78
    • 60649088052 scopus 로고    scopus 로고
    • Numerical investigations of effect of membrane electrode assembly structure on water crossover in a liquid-feed direct methanol fuel cell
    • Yang WW, Zhao TS (2009) Numerical investigations of effect of membrane electrode assembly structure on water crossover in a liquid-feed direct methanol fuel cell. J Power Sources 188:433–446
    • (2009) J Power Sources , vol.188 , pp. 433-446
    • Yang, W.W.1    Zhao, T.S.2
  • 79
    • 84872292646 scopus 로고    scopus 로고
    • Review and advances of direct methanol fuel cells: part II: modeling and numerical simulation
    • Bahrami H, Faghri A (2013) Review and advances of direct methanol fuel cells: part II: modeling and numerical simulation. J Power Sources 230:303–320
    • (2013) J Power Sources , vol.230 , pp. 303-320
    • Bahrami, H.1    Faghri, A.2
  • 80
    • 77951112023 scopus 로고    scopus 로고
    • Double microporous layer cathode for membrane electrode assembly of passive direct methanol fuel cells
    • Cao J, Chen M, Chen J, Wang S, Zou Z, Li Z, Akins DL, Yang H (2010) Double microporous layer cathode for membrane electrode assembly of passive direct methanol fuel cells. Int J Hydrog Energy 35:4622–4629
    • (2010) Int J Hydrog Energy , vol.35 , pp. 4622-4629
    • Cao, J.1    Chen, M.2    Chen, J.3    Wang, S.4    Zou, Z.5    Li, Z.6    Akins, D.L.7    Yang, H.8
  • 81
    • 34247565997 scopus 로고    scopus 로고
    • Water and air management systems for a passive direct methanol fuel cell
    • Jewett G, Guo Z, Faghri A (2007) Water and air management systems for a passive direct methanol fuel cell. J Power Sources 168:434–446
    • (2007) J Power Sources , vol.168 , pp. 434-446
    • Jewett, G.1    Guo, Z.2    Faghri, A.3
  • 82
    • 33749983330 scopus 로고    scopus 로고
    • Membrane electrode assembly for passive direct methanol fuel cells
    • Kim HK, Oh JM, Kim JH, Chang H (2006) Membrane electrode assembly for passive direct methanol fuel cells. J Power Sources 162:497–501
    • (2006) J Power Sources , vol.162 , pp. 497-501
    • Kim, H.K.1    Oh, J.M.2    Kim, J.H.3    Chang, H.4
  • 83
    • 84891775790 scopus 로고    scopus 로고
    • Novel cathodal diffusion layer with mesoporous carbon for the passive direct methanol fuel cell
    • Cao J, Wang L, Song L, Xu J, Wang H, Chen Z, Huang Q, Yang H (2014) Novel cathodal diffusion layer with mesoporous carbon for the passive direct methanol fuel cell. Electrochim Acta 118:163–168
    • (2014) Electrochim Acta , vol.118 , pp. 163-168
    • Cao, J.1    Wang, L.2    Song, L.3    Xu, J.4    Wang, H.5    Chen, Z.6    Huang, Q.7    Yang, H.8
  • 84
    • 78650920065 scopus 로고    scopus 로고
    • Fluorination of Vulcan XC-72R for cathodic microporous layer of passive micro direct methanol fuel cell
    • Chen M, Wang S, Zou Z, Yuan T, Li Z, Akins DL, Yang H (2010) Fluorination of Vulcan XC-72R for cathodic microporous layer of passive micro direct methanol fuel cell. J Appl Electrochem 40:2117–2124
    • (2010) J Appl Electrochem , vol.40 , pp. 2117-2124
    • Chen, M.1    Wang, S.2    Zou, Z.3    Yuan, T.4    Li, Z.5    Akins, D.L.6    Yang, H.7
  • 86
    • 84924904718 scopus 로고    scopus 로고
    • Simulation of mass transfer in a passive direct methanol fuel cell cathode with perforated current collector
    • Xue YQ, Guo H, Shang HH, Ye F, Ma CF (2015) Simulation of mass transfer in a passive direct methanol fuel cell cathode with perforated current collector. Energy 81:501–510
    • (2015) Energy , vol.81 , pp. 501-510
    • Xue, Y.Q.1    Guo, H.2    Shang, H.H.3    Ye, F.4    Ma, C.F.5
  • 87
    • 34047179074 scopus 로고    scopus 로고
    • A novel electrode architecture for passive direct methanol fuel cells
    • Chen R, Zhao TS (2007) A novel electrode architecture for passive direct methanol fuel cells. Electrochem Commun 9:718–724
    • (2007) Electrochem Commun , vol.9 , pp. 718-724
    • Chen, R.1    Zhao, T.S.2
  • 88
    • 34548405492 scopus 로고    scopus 로고
    • Cathode structure optimization for air-breathing DMFC by application of pore-forming agents
    • Reshetenko TV, Kim HT, Kweon HJ (2007) Cathode structure optimization for air-breathing DMFC by application of pore-forming agents. J Power Sources 171:433–440
    • (2007) J Power Sources , vol.171 , pp. 433-440
    • Reshetenko, T.V.1    Kim, H.T.2    Kweon, H.J.3
  • 90
    • 1842421827 scopus 로고    scopus 로고
    • Recent progress in passive direct methanol fuel cells at KIST
    • Kim D, Cho EA, Hong SA, Oh IH, Ha HY (2004) Recent progress in passive direct methanol fuel cells at KIST. J Power Sources 130:172–177
    • (2004) J Power Sources , vol.130 , pp. 172-177
    • Kim, D.1    Cho, E.A.2    Hong, S.A.3    Oh, I.H.4    Ha, H.Y.5
  • 91
    • 79955484143 scopus 로고    scopus 로고
    • High pressure anode operation of direct methanol fuel cells for carbon dioxide management
    • Lundin MD, McCready MJ (2011) High pressure anode operation of direct methanol fuel cells for carbon dioxide management. J Power Sources 196:5583–5590
    • (2011) J Power Sources , vol.196 , pp. 5583-5590
    • Lundin, M.D.1    McCready, M.J.2
  • 92
    • 84861099061 scopus 로고    scopus 로고
    • Structural diversity and orientation dependence of a liquid-fed passive air-breathing direct methanol fuel cell
    • Yuan W, Tang Y, Yang X, Liu B, Wan Z (2012) Structural diversity and orientation dependence of a liquid-fed passive air-breathing direct methanol fuel cell. Int J Hydrog Energy 37:9298–9313
    • (2012) Int J Hydrog Energy , vol.37 , pp. 9298-9313
    • Yuan, W.1    Tang, Y.2    Yang, X.3    Liu, B.4    Wan, Z.5
  • 93
    • 33846217012 scopus 로고    scopus 로고
    • Effect of current-collector structure on performance of passive micro direct methanol fuel cell
    • Yang WM, Chou SK, Shu C (2007) Effect of current-collector structure on performance of passive micro direct methanol fuel cell. J Power Sources 164:549–554
    • (2007) J Power Sources , vol.164 , pp. 549-554
    • Yang, W.M.1    Chou, S.K.2    Shu, C.3
  • 94
    • 33744918095 scopus 로고    scopus 로고
    • Effect of cell orientation on the performance of passive direct methanol fuel cells
    • Chen R, Zhao TS, Liu JG (2006) Effect of cell orientation on the performance of passive direct methanol fuel cells. J Power Sources 157:351–357
    • (2006) J Power Sources , vol.157 , pp. 351-357
    • Chen, R.1    Zhao, T.S.2    Liu, J.G.3
  • 95
    • 84907494120 scopus 로고    scopus 로고
    • 2 removal and enhanced catalyst utilization
    • Liu W, Cai W, Liu C, Sun S, Xing W (2015) Magnetic coupled passive direct methanol fuel cell: promoted CO2 removal and enhanced catalyst utilization. Fuel 139:308–313
    • (2015) Fuel , vol.139 , pp. 308-313
    • Liu, W.1    Cai, W.2    Liu, C.3    Sun, S.4    Xing, W.5
  • 96
    • 34247147949 scopus 로고    scopus 로고
    • Performance characterization of passive direct methanol fuel cells
    • Chen R, Zhao TS (2007) Performance characterization of passive direct methanol fuel cells. J Power Sources 167:455–460
    • (2007) J Power Sources , vol.167 , pp. 455-460
    • Chen, R.1    Zhao, T.S.2
  • 97
    • 28044457690 scopus 로고    scopus 로고
    • Mathematical modeling of a passive-feed DMFC with heat transfer effect
    • Chen R, Zhao TS (2005) Mathematical modeling of a passive-feed DMFC with heat transfer effect. J Power Sources 152:122–130
    • (2005) J Power Sources , vol.152 , pp. 122-130
    • Chen, R.1    Zhao, T.S.2
  • 98
    • 65649105899 scopus 로고    scopus 로고
    • Small direct methanol fuel cells with passive supply of reactants
    • Zhao TS, Chen R, Yang WW, Xu C (2009) Small direct methanol fuel cells with passive supply of reactants. J Power Sources 191:185–202
    • (2009) J Power Sources , vol.191 , pp. 185-202
    • Zhao, T.S.1    Chen, R.2    Yang, W.W.3    Xu, C.4
  • 99
    • 84881111765 scopus 로고    scopus 로고
    • Non-isothermal modeling of a small passive direct methanol fuel cell in vertical operation with anode natural convection effect
    • Wang L, Zhang Y, An Z, Huang S, Zhou Z, Liu X (2013) Non-isothermal modeling of a small passive direct methanol fuel cell in vertical operation with anode natural convection effect. Energy 58:283–295
    • (2013) Energy , vol.58 , pp. 283-295
    • Wang, L.1    Zhang, Y.2    An, Z.3    Huang, S.4    Zhou, Z.5    Liu, X.6
  • 100
    • 41949103414 scopus 로고    scopus 로고
    • Transient modeling and analysis of a passive liquid-feed DMFC
    • Xiao B, Faghri A (2008) Transient modeling and analysis of a passive liquid-feed DMFC. Int J Heat and Mass Transfer 51:3127–3143
    • (2008) Int J Heat and Mass Transfer , vol.51 , pp. 3127-3143
    • Xiao, B.1    Faghri, A.2
  • 102
    • 78049359269 scopus 로고    scopus 로고
    • Exergy analysis of a passive direct methanol fuel cell
    • Bahrami H, Faghri A (2011) Exergy analysis of a passive direct methanol fuel cell. J Power Sources 196:1191–1204
    • (2011) J Power Sources , vol.196 , pp. 1191-1204
    • Bahrami, H.1    Faghri, A.2
  • 103
    • 15344342465 scopus 로고    scopus 로고
    • On the consequences of methanol crossover in passive air-breathing direct methanol fuel cells
    • Kho BK, Bae B, Scibioh MA, Lee J, Ha HY (2005) On the consequences of methanol crossover in passive air-breathing direct methanol fuel cells. J Power Sources 142:50–55
    • (2005) J Power Sources , vol.142 , pp. 50-55
    • Kho, B.K.1    Bae, B.2    Scibioh, M.A.3    Lee, J.4    Ha, H.Y.5
  • 105
    • 84922344569 scopus 로고    scopus 로고
    • Effect of anode and cathode flow field geometry on passive direct methanol fuel cell performance
    • Gholami O, JavadImen S, Shakeri M (2015) Effect of anode and cathode flow field geometry on passive direct methanol fuel cell performance. ElectrochimicaActa 158:410–417
    • (2015) ElectrochimicaActa , vol.158 , pp. 410-417
    • Gholami, O.1    JavadImen, S.2    Shakeri, M.3
  • 106
    • 66349101737 scopus 로고    scopus 로고
    • Self-regulating passive fuel supply for small direct methanol fuel cells operating in all orientations
    • Paust N, Krumbholz S, Munt S, Muller C, Koltay P, Zengerle R, Ziegler C (2009) Self-regulating passive fuel supply for small direct methanol fuel cells operating in all orientations. J Power Sources 192:442–450
    • (2009) J Power Sources , vol.192 , pp. 442-450
    • Paust, N.1    Krumbholz, S.2    Munt, S.3    Muller, C.4    Koltay, P.5    Zengerle, R.6    Ziegler, C.7
  • 107
    • 6444225295 scopus 로고    scopus 로고
    • Design and fabrication of pumpless small direct methanol fuel cells for portable applications
    • Shimizu T, Momma T, Mohamedi M, Osaka T, Sarangapani S (2004) Design and fabrication of pumpless small direct methanol fuel cells for portable applications. J Power Sources 137:277–283
    • (2004) J Power Sources , vol.137 , pp. 277-283
    • Shimizu, T.1    Momma, T.2    Mohamedi, M.3    Osaka, T.4    Sarangapani, S.5
  • 108
    • 84925988968 scopus 로고    scopus 로고
    • Investigation of methanol oxidation on a highly active and stable Pt–Sn electrocatalyst supported on carbon–polyaniline composite for application in a passive direct methanol fuel cell
    • Amani M, Kazemeini M, Hamedanian M, Pahlavanzadeh H, Gharibi H (2015) Investigation of methanol oxidation on a highly active and stable Pt–Sn electrocatalyst supported on carbon–polyaniline composite for application in a passive direct methanol fuel cell. Mater Res Bull 68:166–178
    • (2015) Mater Res Bull , vol.68 , pp. 166-178
    • Amani, M.1    Kazemeini, M.2    Hamedanian, M.3    Pahlavanzadeh, H.4    Gharibi, H.5
  • 109
    • 84898787516 scopus 로고    scopus 로고
    • Ni2P enhances the activity and durability of the Pt anode catalyst in direct methanol fuel cells
    • Chang J, Feng L, Liu C, Xing W, Hu X (2014) Ni2P enhances the activity and durability of the Pt anode catalyst in direct methanol fuel cells. Energy & Environmental Science 7:628–1632
    • (2014) Energy & Environmental Science , vol.7 , pp. 628-1632
    • Chang, J.1    Feng, L.2    Liu, C.3    Xing, W.4    Hu, X.5
  • 110
    • 84874404545 scopus 로고    scopus 로고
    • Fabrication of MEA based on optimum amount of Co in PdxCo/C alloy nanoparticles as a new cathode for oxygen reduction reaction in passive direct methanol fuel cells
    • Gharibi H, Golmohammadi F, Kheirmand M (2013) Fabrication of MEA based on optimum amount of Co in PdxCo/C alloy nanoparticles as a new cathode for oxygen reduction reaction in passive direct methanol fuel cells. Electrochim Acta 89:212–221
    • (2013) Electrochim Acta , vol.89 , pp. 212-221
    • Gharibi, H.1    Golmohammadi, F.2    Kheirmand, M.3
  • 113
    • 0036814731 scopus 로고    scopus 로고
    • Catalysis for low temperature fuel cells part III: challenges for the direct methanol fuel cell
    • Hogarth MP, Ralph TR (2002) Catalysis for low temperature fuel cells part III: challenges for the direct methanol fuel cell. Platinum Metals Review 46:146–164
    • (2002) Platinum Metals Review , vol.46 , pp. 146-164
    • Hogarth, M.P.1    Ralph, T.R.2
  • 114
    • 84871757397 scopus 로고    scopus 로고
    • An overview on non-platinum cathode catalysts for direct methanol fuel cell
    • Karim NA, Kamarudin SK (2013) An overview on non-platinum cathode catalysts for direct methanol fuel cell. Applied Energy 103:212–220
    • (2013) Applied Energy , vol.103 , pp. 212-220
    • Karim, N.A.1    Kamarudin, S.K.2
  • 115
    • 84948711200 scopus 로고    scopus 로고
    • Searching for suitable catalysts for a passive direct methanol fuel cell cathode, Int J Hydrogen Energ
    • Asteazaran M, Cespedes G, Moreno MS, Bengió S, Castro Lun AM (2015) Searching for suitable catalysts for a passive direct methanol fuel cell cathode. Int J Hydrogen Energ. doi:10.1016/j.ijhydene.2015.05.134
    • (2015) Castro Lun AM
    • Asteazaran, M.1    Cespedes, G.2    Moreno, M.S.3    Bengió, S.4
  • 116
    • 33645529484 scopus 로고    scopus 로고
    • Methanol-tolerant oxygen reduction electrocatalysts based on Pd-3D transition metal alloys for direct methanol fuel cells
    • Lee K, Savadogo O, Ishihara A, Mitsushima S, Kamiya N, Ota K (2006) Methanol-tolerant oxygen reduction electrocatalysts based on Pd-3D transition metal alloys for direct methanol fuel cells. J Electrochem Soc 153:A20–A24
    • (2006) J Electrochem Soc , vol.153 , pp. A20-A24
    • Lee, K.1    Savadogo, O.2    Ishihara, A.3    Mitsushima, S.4    Kamiya, N.5    Ota, K.6
  • 117
    • 34848874888 scopus 로고    scopus 로고
    • Carbon-supported palladium-cobalt-noble metal (Au, Ag, Pt) nanocatalysts as methanol tolerant oxygen-reduction cathode materials in DMFCs
    • Mathiyarasuz J, Phani KLN (2007) Carbon-supported palladium-cobalt-noble metal (Au, Ag, Pt) nanocatalysts as methanol tolerant oxygen-reduction cathode materials in DMFCs. J Electrochem Soc 154:B1100–B1105
    • (2007) J Electrochem Soc , vol.154 , pp. B1100-B1105
    • Mathiyarasuz, J.1    Phani, K.L.N.2
  • 119
    • 54849436200 scopus 로고    scopus 로고
    • Core/shell Pt/C nanoparticles embedded in mesoporous carbon as a methanol-tolerant cathode catalyst in direct methanol fuel cells
    • Wen Z, Liu J, Li J (2008) Core/shell Pt/C nanoparticles embedded in mesoporous carbon as a methanol-tolerant cathode catalyst in direct methanol fuel cells. Adv Mater 20:743–747
    • (2008) Adv Mater , vol.20 , pp. 743-747
    • Wen, Z.1    Liu, J.2    Li, J.3
  • 120
    • 84875264974 scopus 로고    scopus 로고
    • 2 electrocatalysts for the oxygen reduction reaction in direct methanol fuel cells
    • Kima IT, Choia M, Leeb HK, Shim J (2013) Characterization of methanol-tolerant Pd–WO3 and Pd–SnO2 electrocatalysts for the oxygen reduction reaction in direct methanol fuel cells. Journal of Industrial and Engineering Chemistry 19:813–818
    • (2013) Journal of Industrial and Engineering Chemistry , vol.19 , pp. 813-818
    • Kima, I.T.1    Choia, M.2    Leeb, H.K.3    Shim, J.4
  • 121
    • 84879866464 scopus 로고    scopus 로고
    • Performance analysis of polymer electrolyte membranes for direct methanol fuel cells
    • Lufrano F, Baglio V, Staiti P, Antonucci V, Arico AS (2013) Performance analysis of polymer electrolyte membranes for direct methanol fuel cells. J Power Sources 243:519–534
    • (2013) J Power Sources , vol.243 , pp. 519-534
    • Lufrano, F.1    Baglio, V.2    Staiti, P.3    Antonucci, V.4    Arico, A.S.5
  • 122
    • 75349095222 scopus 로고    scopus 로고
    • Overview of hybrid membranes for direct-methanol fuel-cell applications
    • Ahmad H, Kamarudin SK, Hasran UA, Daud WRW (2010) Overview of hybrid membranes for direct-methanol fuel-cell applications. Int J Hydrog Energy 35:2160–2175
    • (2010) Int J Hydrog Energy , vol.35 , pp. 2160-2175
    • Ahmad, H.1    Kamarudin, S.K.2    Hasran, U.A.3    Daud, W.R.W.4
  • 123
    • 34248573933 scopus 로고    scopus 로고
    • A review of polymer electrolyte membranes for direct methanol fuel cells
    • Neburchilov V, Martin J, Wang H, Zhang J (2007) A review of polymer electrolyte membranes for direct methanol fuel cells. J Power Sources 169:221–238
    • (2007) J Power Sources , vol.169 , pp. 221-238
    • Neburchilov, V.1    Martin, J.2    Wang, H.3    Zhang, J.4
  • 124
    • 78650607410 scopus 로고    scopus 로고
    • A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research
    • Wang Y, Chen KS, Mishler J, Cho SC, Adroher XC (2011) A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Applied Energy 88:981–1007
    • (2011) Applied Energy , vol.88 , pp. 981-1007
    • Wang, Y.1    Chen, K.S.2    Mishler, J.3    Cho, S.C.4    Adroher, X.C.5
  • 125
    • 84893513658 scopus 로고    scopus 로고
    • Simultaneous tuning of methanol crossover and ionic conductivity of sPEEK membrane electrolyte by incorporation of PSSA functionalized MWCNTs: a comparative study in DMFCs
    • Rambabu G, Bhat SD (2014) Simultaneous tuning of methanol crossover and ionic conductivity of sPEEK membrane electrolyte by incorporation of PSSA functionalized MWCNTs: a comparative study in DMFCs. Chem Eng J 243:517–525
    • (2014) Chem Eng J , vol.243 , pp. 517-525
    • Rambabu, G.1    Bhat, S.D.2
  • 126
    • 84861526388 scopus 로고    scopus 로고
    • Methanol sorption and permeability in Nafion and acid-doped PBI and ABPBI membranes
    • Diaz LA, Abuin GC, Corti HR (2012) Methanol sorption and permeability in Nafion and acid-doped PBI and ABPBI membranes. J Membr Sci 411–412:35–44
    • (2012) J Membr Sci , vol.411-412 , pp. 35-44
    • Diaz, L.A.1    Abuin, G.C.2    Corti, H.R.3
  • 127
    • 84891586971 scopus 로고    scopus 로고
    • An effective methanol-blocking membrane modified with graphene oxide nanosheets for passive direct methanol fuel cells
    • Yuan T, Pu L, Huang Q, Zhang H, Li X, Yang H (2014) An effective methanol-blocking membrane modified with graphene oxide nanosheets for passive direct methanol fuel cells. Electrochim Acta 117:393–397
    • (2014) Electrochim Acta , vol.117 , pp. 393-397
    • Yuan, T.1    Pu, L.2    Huang, Q.3    Zhang, H.4    Li, X.5    Yang, H.6
  • 128
    • 78650510164 scopus 로고    scopus 로고
    • Performance of composite Nafion/PVA membranes for direct methanol fuel cells
    • Molla S, Compan V (2011) Performance of composite Nafion/PVA membranes for direct methanol fuel cells. J Power Sources 196:2699–2708
    • (2011) J Power Sources , vol.196 , pp. 2699-2708
    • Molla, S.1    Compan, V.2
  • 129
    • 80054051091 scopus 로고    scopus 로고
    • A novel hybrid Nafion-PBI-ZP membrane for direct methanol fuel cells
    • Ahmad H, Kamarudin SK, Hasran UA, Daud WRW (2011) A novel hybrid Nafion-PBI-ZP membrane for direct methanol fuel cells. Int J Hydrog Energy 36:14668–14677
    • (2011) Int J Hydrog Energy , vol.36 , pp. 14668-14677
    • Ahmad, H.1    Kamarudin, S.K.2    Hasran, U.A.3    Daud, W.R.W.4
  • 130
    • 78649931457 scopus 로고    scopus 로고
    • PTFE coated Nafion proton conducting membranes for direct methanol fuel cells
    • Chiu KF, Chen YR, Lin HC, Ho WH (2010) PTFE coated Nafion proton conducting membranes for direct methanol fuel cells. Surf Coat Technol 205:1647–1650
    • (2010) Surf Coat Technol , vol.205 , pp. 1647-1650
    • Chiu, K.F.1    Chen, Y.R.2    Lin, H.C.3    Ho, W.H.4
  • 131
    • 68049134502 scopus 로고    scopus 로고
    • Surface-modified Nafion membrane by trioctylphosphine-stabilized palladium nanoparticles for DMFC applications
    • Tian AH, Kim JY, Shi JY, Lee K, Kim K (2009) Surface-modified Nafion membrane by trioctylphosphine-stabilized palladium nanoparticles for DMFC applications. J Phys Chem Solid 70:1207–1212
    • (2009) J Phys Chem Solid , vol.70 , pp. 1207-1212
    • Tian, A.H.1    Kim, J.Y.2    Shi, J.Y.3    Lee, K.4    Kim, K.5
  • 133
    • 0000779140 scopus 로고    scopus 로고
    • Mechanism and electrocatalysis in the direct methanol fuel cell
    • Hamnett A (1997) Mechanism and electrocatalysis in the direct methanol fuel cell. Catalysis Today 38:445–457
    • (1997) Catalysis Today , vol.38 , pp. 445-457
    • Hamnett, A.1
  • 134
    • 33748179141 scopus 로고
    • Electrocatalysis by ad-atoms: part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms
    • Watanabe M, Motoo S (1975) Electrocatalysis by ad-atoms: part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms. Journal of Electroanalytical Chemistry 60:267–273
    • (1975) Journal of Electroanalytical Chemistry , vol.60 , pp. 267-273
    • Watanabe, M.1    Motoo, S.2
  • 137
    • 84872040949 scopus 로고    scopus 로고
    • A comparative study of electrochemical methods on Pt–Ru DMFC anode catalysts: the effect of Ru addition
    • Sahin O, Kivrak H (2013) A comparative study of electrochemical methods on Pt–Ru DMFC anode catalysts: the effect of Ru addition. Int J Hydrog Energy 38:901–909
    • (2013) Int J Hydrog Energy , vol.38 , pp. 901-909
    • Sahin, O.1    Kivrak, H.2
  • 138
    • 40249093731 scopus 로고    scopus 로고
    • Effect of NaBH4 concentration on the characteristics of PtRu/C catalyst for the anode of DMFC prepared by the impregnation method
    • Hyun MS, Kim SK, Lee B, Peck D, Shul Y, Jung D (2008) Effect of NaBH4 concentration on the characteristics of PtRu/C catalyst for the anode of DMFC prepared by the impregnation method. Catalysis Today 132:138–145
    • (2008) Catalysis Today , vol.132 , pp. 138-145
    • Hyun, M.S.1    Kim, S.K.2    Lee, B.3    Peck, D.4    Shul, Y.5    Jung, D.6
  • 139
    • 33751251374 scopus 로고    scopus 로고
    • Preparation and characterization of high metal content Pt–Ru alloy catalysts on various carbon blacks for DMFCs
    • Han K, Lee J, Kim H (2006) Preparation and characterization of high metal content Pt–Ru alloy catalysts on various carbon blacks for DMFCs. Electrochim Acta 52:1697–1702
    • (2006) Electrochim Acta , vol.52 , pp. 1697-1702
    • Han, K.1    Lee, J.2    Kim, H.3
  • 140
    • 10444230406 scopus 로고    scopus 로고
    • Catalytic activity of Pt–Ru alloys synthesized by a microemulsion method in direct methanol fuel cells
    • Xiong L, Manthiram A (2005) Catalytic activity of Pt–Ru alloys synthesized by a microemulsion method in direct methanol fuel cells. Solid State Ion 176:385–392
    • (2005) Solid State Ion , vol.176 , pp. 385-392
    • Xiong, L.1    Manthiram, A.2
  • 141
    • 84857483713 scopus 로고    scopus 로고
    • Support materials for PEMFC and DMFC electrocatalysts—a review
    • Sharma S, Pollet BG (2012) Support materials for PEMFC and DMFC electrocatalysts—a review. J Power Sources 208:96–119
    • (2012) J Power Sources , vol.208 , pp. 96-119
    • Sharma, S.1    Pollet, B.G.2
  • 144
    • 84873178957 scopus 로고    scopus 로고
    • Binary Pt–Pd and ternary Pt–Pd–Ru nanoelectrocatalysts for direct methanol fuel cells
    • Arikan T, Kannan AM, Kadirgan F (2013) Binary Pt–Pd and ternary Pt–Pd–Ru nanoelectrocatalysts for direct methanol fuel cells. Int J Hydrog Energy 38:2900–2907
    • (2013) Int J Hydrog Energy , vol.38 , pp. 2900-2907
    • Arikan, T.1    Kannan, A.M.2    Kadirgan, F.3
  • 145
    • 84896029946 scopus 로고    scopus 로고
    • PtPdCo ternary electrocatalyst for methanol tolerant oxygen reduction reaction in direct methanol fuel cell
    • Cho YH, Kim OH, Chung DY, Choe H, Cho YH, Sung YE (2014) PtPdCo ternary electrocatalyst for methanol tolerant oxygen reduction reaction in direct methanol fuel cell. Appl Catal Environ 154–155:309–315
    • (2014) Appl Catal Environ , vol.154-155 , pp. 309-315
    • Cho, Y.H.1    Kim, O.H.2    Chung, D.Y.3    Choe, H.4    Cho, Y.H.5    Sung, Y.E.6
  • 146
    • 77957343776 scopus 로고    scopus 로고
    • PtRuMo/C catalysts for direct methanol fuel cells: effect of the pretreatment on the structural characteristics and methanol electrooxidation
    • Tsiouvaras N, Huerta MVM, Paschos O, Stimming U, Fierro JLG, Pena MA (2010) PtRuMo/C catalysts for direct methanol fuel cells: effect of the pretreatment on the structural characteristics and methanol electrooxidation. Int J Hydrog Energy 35:11478–11488
    • (2010) Int J Hydrog Energy , vol.35 , pp. 11478-11488
    • Tsiouvaras, N.1    Huerta, M.V.M.2    Paschos, O.3    Stimming, U.4    Fierro, J.L.G.5    Pena, M.A.6
  • 147
    • 34250162781 scopus 로고    scopus 로고
    • Low Pt content Pt–Ru–Ir–Sn quaternary catalysts for anodic methanol oxidation in DMFC
    • Neburchilov V, Wang H, Zhang J (2007) Low Pt content Pt–Ru–Ir–Sn quaternary catalysts for anodic methanol oxidation in DMFC. Electrochem Commun 9:1788–1792
    • (2007) Electrochem Commun , vol.9 , pp. 1788-1792
    • Neburchilov, V.1    Wang, H.2    Zhang, J.3
  • 148
    • 84881169142 scopus 로고    scopus 로고
    • High-performance quaternary PtRuIrNi electrocatalysts with hierarchical nanostructured carbon support
    • Kim JH, Kwon SY, Bhattacharjya D, Chai GS, Yu JS (2013) High-performance quaternary PtRuIrNi electrocatalysts with hierarchical nanostructured carbon support. J Catal 306:133–145
    • (2013) J Catal , vol.306 , pp. 133-145
    • Kim, J.H.1    Kwon, S.Y.2    Bhattacharjya, D.3    Chai, G.S.4    Yu, J.S.5
  • 149
    • 0038219645 scopus 로고    scopus 로고
    • Characterization of Ni-Pd alloy as anode for methanol oxidative fuel cell
    • Shobha T, Aravinda CL, Bera P, Devi LG, Mayanna SM (2003) Characterization of Ni-Pd alloy as anode for methanol oxidative fuel cell. Mater Chem Phys 80:656–661
    • (2003) Mater Chem Phys , vol.80 , pp. 656-661
    • Shobha, T.1    Aravinda, C.L.2    Bera, P.3    Devi, L.G.4    Mayanna, S.M.5
  • 150
    • 30944453239 scopus 로고    scopus 로고
    • Gold nanoparticles dispersed polyaniline grafted multiwall carbon nanotubes as newer electrocatalysts: preparation and performances for methanol oxidation
    • Santhosh P, Gopalan A, Lee KP (2006) Gold nanoparticles dispersed polyaniline grafted multiwall carbon nanotubes as newer electrocatalysts: preparation and performances for methanol oxidation. J Catal 238:177–185
    • (2006) J Catal , vol.238 , pp. 177-185
    • Santhosh, P.1    Gopalan, A.2    Lee, K.P.3
  • 151
    • 58949091440 scopus 로고    scopus 로고
    • Synthesis, characterization and electrocatalytic properties of carbon nitride nanotubes for methanol electrooxidation
    • Lu X, Wang H, Zhang S, Cui D, Wang Q (2009) Synthesis, characterization and electrocatalytic properties of carbon nitride nanotubes for methanol electrooxidation. Solid State Sciences 11:428–432
    • (2009) Solid State Sciences , vol.11 , pp. 428-432
    • Lu, X.1    Wang, H.2    Zhang, S.3    Cui, D.4    Wang, Q.5
  • 152
    • 67649300467 scopus 로고    scopus 로고
    • Review of non-platinum anode catalysts for DMFC and PEMFC application
    • Serov A, Kwak C (2009) Review of non-platinum anode catalysts for DMFC and PEMFC application. Appl Catal Environ 90:313–320
    • (2009) Appl Catal Environ , vol.90 , pp. 313-320
    • Serov, A.1    Kwak, C.2
  • 153
    • 19344377496 scopus 로고    scopus 로고
    • 2 nanotube catalysts for methanol electro-oxidation
    • Wang M, Guo DJ, Li HL (2005) High activity of novel Pd/TiO2 nanotube catalysts for methanol electro-oxidation. Journal of Solid State Chemistry 178:1996–2000
    • (2005) Journal of Solid State Chemistry , vol.178 , pp. 1996-2000
    • Wang, M.1    Guo, D.J.2    Li, H.L.3
  • 154
    • 84881498481 scopus 로고    scopus 로고
    • Recent progress in the development of anode and cathode catalysts for direct methanol fuel cells
    • Tiwari JN, Tiwari RN, Singh G, Kim KS (2013) Recent progress in the development of anode and cathode catalysts for direct methanol fuel cells. Nano Energy 2:553–578
    • (2013) Nano Energy , vol.2 , pp. 553-578
    • Tiwari, J.N.1    Tiwari, R.N.2    Singh, G.3    Kim, K.S.4
  • 156
    • 34848825614 scopus 로고    scopus 로고
    • A feasibility study on direct methanol fuel cells for laptop computers based on a cost comparison with lithium-ion batteries
    • Wee JH (2007) A feasibility study on direct methanol fuel cells for laptop computers based on a cost comparison with lithium-ion batteries. J Power Sources 173:424–436
    • (2007) J Power Sources , vol.173 , pp. 424-436
    • Wee, J.H.1
  • 158
    • 66349088886 scopus 로고    scopus 로고
    • Investigation on the durability of direct methanol fuel cells
    • Cha HC, Chen CY, Shiu JY (2009) Investigation on the durability of direct methanol fuel cells. J Power Sources 192:451–456
    • (2009) J Power Sources , vol.192 , pp. 451-456
    • Cha, H.C.1    Chen, C.Y.2    Shiu, J.Y.3
  • 159
    • 84907165296 scopus 로고    scopus 로고
    • Investigation of MEA degradation in a passive direct methanol fuel cell under different modes of operation
    • Zainoodin AM, Kamarudin SK, Masdar MS, Daud WRW, Mohamad AB, Sahari J (2014) Investigation of MEA degradation in a passive direct methanol fuel cell under different modes of operation. Applied Energy 135:364–372
    • (2014) Applied Energy , vol.135 , pp. 364-372
    • Zainoodin, A.M.1    Kamarudin, S.K.2    Masdar, M.S.3    Daud, W.R.W.4    Mohamad, A.B.5    Sahari, J.6
  • 162
    • 84878811039 scopus 로고    scopus 로고
    • A DMFC stack operating with hydrocarbon blend membranes and PteRueSne Ce/C and PdeCo/C electrocatalysts
    • Zhao X, Li W, Murthy A, Jiang Z, Zuo Z, Manthiram A (2013) A DMFC stack operating with hydrocarbon blend membranes and PteRueSne Ce/C and PdeCo/C electrocatalysts. Int J Hydrog Energy 38:7448–7457
    • (2013) Int J Hydrog Energy , vol.38 , pp. 7448-7457
    • Zhao, X.1    Li, W.2    Murthy, A.3    Jiang, Z.4    Zuo, Z.5    Manthiram, A.6
  • 163
    • 84908110440 scopus 로고    scopus 로고
    • On the effect of gas diffusion layers hydrophobicity on direct methanol fuel cell performance and degradation
    • Bresciani F, Rabissi C, Zago M, Marchesi R, Casalegno A (2015) On the effect of gas diffusion layers hydrophobicity on direct methanol fuel cell performance and degradation. J Power Sources 273:680–687
    • (2015) J Power Sources , vol.273 , pp. 680-687
    • Bresciani, F.1    Rabissi, C.2    Zago, M.3    Marchesi, R.4    Casalegno, A.5
  • 164
    • 33646585775 scopus 로고    scopus 로고
    • Characterization of catalysts and membrane in DMFC lifetime testing
    • Cheng X, Peng C, You M, Liu L, Zhang Y, Fan Q (2006) Characterization of catalysts and membrane in DMFC lifetime testing. Electrochim Acta 51:4620–4625
    • (2006) Electrochim Acta , vol.51 , pp. 4620-4625
    • Cheng, X.1    Peng, C.2    You, M.3    Liu, L.4    Zhang, Y.5    Fan, Q.6
  • 165
    • 77953137978 scopus 로고    scopus 로고
    • Effects of structural aspects on the performance of a passive air-breathing direct methanol fuel cell
    • Tang Y, Yuan W, Pan M, Tang B, Li Z, Wan Z (2010) Effects of structural aspects on the performance of a passive air-breathing direct methanol fuel cell. J Power Sources 195:5628–5636
    • (2010) J Power Sources , vol.195 , pp. 5628-5636
    • Tang, Y.1    Yuan, W.2    Pan, M.3    Tang, B.4    Li, Z.5    Wan, Z.6
  • 166
    • 77957268166 scopus 로고    scopus 로고
    • Enhancement of water retention in the membrane electrode assembly for direct methanol fuel cells operating with neat methanol
    • Wu QX, Zhao TS, Chen R, Yang WW (2010) Enhancement of water retention in the membrane electrode assembly for direct methanol fuel cells operating with neat methanol. Int J Hydrogen Energ 35:10547–10555
    • (2010) Int J Hydrogen Energ , vol.35 , pp. 10547-10555
    • Wu, Q.X.1    Zhao, T.S.2    Chen, R.3    Yang, W.W.4
  • 167
    • 42749094385 scopus 로고    scopus 로고
    • Optimization of properties and operating parameters of a passive DMFC mini-stack at ambient temperature
    • Baglio V, Stassi A, Matera FV, Blasi AD, Antonucci V, Arico AS (2008) Optimization of properties and operating parameters of a passive DMFC mini-stack at ambient temperature. J Power Sources 180:797–802
    • (2008) J Power Sources , vol.180 , pp. 797-802
    • Baglio, V.1    Stassi, A.2    Matera, F.V.3    Blasi, A.D.4    Antonucci, V.5    Arico, A.S.6
  • 168
    • 84855860088 scopus 로고    scopus 로고
    • Performance of air-breathing direct methanol fuel cell with Au-coated aluminum current collectors
    • Yuan Z, Zhang Y, Leng J, Zhao Y, Liu X (2012) Performance of air-breathing direct methanol fuel cell with Au-coated aluminum current collectors. Int J Hydrog Energy 37:2571–2578
    • (2012) Int J Hydrog Energy , vol.37 , pp. 2571-2578
    • Yuan, Z.1    Zhang, Y.2    Leng, J.3    Zhao, Y.4    Liu, X.5
  • 169
    • 38349103966 scopus 로고    scopus 로고
    • Effect of current collector corrosion made from printed circuit board (PCB) on the degradation of self-breathing direct methanol fuel cell stack
    • Guo JW, Xie XF, Wang JH, Shang YM (2008) Effect of current collector corrosion made from printed circuit board (PCB) on the degradation of self-breathing direct methanol fuel cell stack. Electrochim Acta 53:3056–3064
    • (2008) Electrochim Acta , vol.53 , pp. 3056-3064
    • Guo, J.W.1    Xie, X.F.2    Wang, J.H.3    Shang, Y.M.4
  • 170
    • 84655165077 scopus 로고    scopus 로고
    • Electrochemical behavior of surface treated metal bipolar plates used in passive direct methanol fuel cell
    • Yang C, Wang J, Xie X, Wang S, Mao Z, Wang H (2012) Electrochemical behavior of surface treated metal bipolar plates used in passive direct methanol fuel cell. Int J Hydrog Energy 37:867–872
    • (2012) Int J Hydrog Energy , vol.37 , pp. 867-872
    • Yang, C.1    Wang, J.2    Xie, X.3    Wang, S.4    Mao, Z.5    Wang, H.6
  • 171
    • 84856707546 scopus 로고    scopus 로고
    • Fabrication and performance evaluation for a novel small planar passive direct methanol fuel cell stack
    • Feng L, Cai W, Li C, Zhang J, Liu C, Xing W (2012) Fabrication and performance evaluation for a novel small planar passive direct methanol fuel cell stack. Fuel 94:401–408
    • (2012) Fuel , vol.94 , pp. 401-408
    • Feng, L.1    Cai, W.2    Li, C.3    Zhang, J.4    Liu, C.5    Xing, W.6
  • 173
    • 58649105762 scopus 로고    scopus 로고
    • Performance evaluation of direct methanol fuel cells for portable applications
    • Rashidi R, Dincer I, Naterer GF, Berg P (2009) Performance evaluation of direct methanol fuel cells for portable applications. J Power Sources 187:509–516
    • (2009) J Power Sources , vol.187 , pp. 509-516
    • Rashidi, R.1    Dincer, I.2    Naterer, G.F.3    Berg, P.4
  • 174
    • 84905706530 scopus 로고    scopus 로고
    • Polypyrrole nanowire networks as anodic micro-porous layer for passive direct methanol fuel cells
    • Wu H, Yuan T, Huang Q, Zhang H, Zou Z, Zheng J, Yang H (2014) Polypyrrole nanowire networks as anodic micro-porous layer for passive direct methanol fuel cells. Electrochim Acta 141:1–5
    • (2014) Electrochim Acta , vol.141 , pp. 1-5
    • Wu, H.1    Yuan, T.2    Huang, Q.3    Zhang, H.4    Zou, Z.5    Zheng, J.6    Yang, H.7
  • 175
    • 84892942198 scopus 로고    scopus 로고
    • Electronspun nanofiber network anode for a passive direct methanol fuel cell
    • Chen P, Wu H, Yuan T, Zou Z, Zhang H, Zheng J, Yang H (2014) Electronspun nanofiber network anode for a passive direct methanol fuel cell. J Power Sources 255:70–75
    • (2014) J Power Sources , vol.255 , pp. 70-75
    • Chen, P.1    Wu, H.2    Yuan, T.3    Zou, Z.4    Zhang, H.5    Zheng, J.6    Yang, H.7
  • 177
    • 79960923270 scopus 로고    scopus 로고
    • Enhanced performance of a passive direct methanol fuel cell with decreased Nafion aggregate size within the anode catalytic layer
    • Yuan T, Kang Y, Chen J, Du C, Qiao Y, Xue X, Zou Z, Yang H (2011) Enhanced performance of a passive direct methanol fuel cell with decreased Nafion aggregate size within the anode catalytic layer. Int J Hydrog Energy 36:10000–10005
    • (2011) Int J Hydrog Energy , vol.36 , pp. 10000-10005
    • Yuan, T.1    Kang, Y.2    Chen, J.3    Du, C.4    Qiao, Y.5    Xue, X.6    Zou, Z.7    Yang, H.8
  • 178
    • 84898784917 scopus 로고    scopus 로고
    • Construction of porous anode by sacrificial template for a passive direct methanol fuel cell
    • Huang Q, Jiang J, Chai J, Yuan T, Zhang H, Zou Z, Zhang X, Yang H (2014) Construction of porous anode by sacrificial template for a passive direct methanol fuel cell. J Power Sources 262:213–218
    • (2014) J Power Sources , vol.262 , pp. 213-218
    • Huang, Q.1    Jiang, J.2    Chai, J.3    Yuan, T.4    Zhang, H.5    Zou, Z.6    Zhang, X.7    Yang, H.8
  • 179
    • 31144433385 scopus 로고    scopus 로고
    • Size reduction of PtRu catalyst particle deposited on carbon support by addition of non-metallic elements
    • Daimon H, Kurobe Y (2006) Size reduction of PtRu catalyst particle deposited on carbon support by addition of non-metallic elements. Catalysis Today 111:182–187
    • (2006) Catalysis Today , vol.111 , pp. 182-187
    • Daimon, H.1    Kurobe, Y.2
  • 180
    • 41949093537 scopus 로고    scopus 로고
    • Passive DMFCs with PtRu catalyst on poly(3,4-ethylene dioxythiophene)-polystyrene-4-sulphonate support
    • Arbizzani C, Biso M, Manferrari E, Mastragostino M (2008) Passive DMFCs with PtRu catalyst on poly(3,4-ethylene dioxythiophene)-polystyrene-4-sulphonate support. J Power Sources 180:41–45
    • (2008) J Power Sources , vol.180 , pp. 41-45
    • Arbizzani, C.1    Biso, M.2    Manferrari, E.3    Mastragostino, M.4
  • 182
    • 84927631788 scopus 로고    scopus 로고
    • Lightweight current collector based on printed-circuit-board technology and its structural effects on the passive air-breathing direct methanol fuel cell
    • Yuan W, Zhang X, Zhang S, Hu J, Li Z, Tang Y (2015) Lightweight current collector based on printed-circuit-board technology and its structural effects on the passive air-breathing direct methanol fuel cell. Renew Energy 81:664–670
    • (2015) Renew Energy , vol.81 , pp. 664-670
    • Yuan, W.1    Zhang, X.2    Zhang, S.3    Hu, J.4    Li, Z.5    Tang, Y.6
  • 183
    • 84938203292 scopus 로고    scopus 로고
    • Effect of electrode variable contact angle on the performance and transport characteristics of passive direct methanol fuel cells
    • Sun J, Guo T, Deng H, Jiao K, Huang X (2015) Effect of electrode variable contact angle on the performance and transport characteristics of passive direct methanol fuel cells. Int J Hydrog Energy 40:10568–10587
    • (2015) Int J Hydrog Energy , vol.40 , pp. 10568-10587
    • Sun, J.1    Guo, T.2    Deng, H.3    Jiao, K.4    Huang, X.5
  • 184
    • 84926145073 scopus 로고    scopus 로고
    • A “4-cell” modular passive DMFC (direct methanol fuel cell) stack for portable applications
    • Wang L, He M, Hu Y, Zhang Y, Liu X, Wang G (2015) A “4-cell” modular passive DMFC (direct methanol fuel cell) stack for portable applications. Energy 229–235
    • (2015) Energy , pp. 229-235
    • Wang, L.1    He, M.2    Hu, Y.3    Zhang, Y.4    Liu, X.5    Wang, G.6
  • 185
    • 77954177816 scopus 로고    scopus 로고
    • Performance comparison of portable direct methanol fuel cell mini-stacks based on a low-cost fluorine-free polymer electrolyte and Nafion membrane
    • Baglio V, Stassi A, Modica E, Antonucci V, Arico AS, Caracino P, Ballabio O, Colombo M, Kopnin E (2010) Performance comparison of portable direct methanol fuel cell mini-stacks based on a low-cost fluorine-free polymer electrolyte and Nafion membrane. Electrochim Acta 55:6022–6027
    • (2010) Electrochim Acta , vol.55 , pp. 6022-6027
    • Baglio, V.1    Stassi, A.2    Modica, E.3    Antonucci, V.4    Arico, A.S.5    Caracino, P.6    Ballabio, O.7    Colombo, M.8    Kopnin, E.9


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.