메뉴 건너뛰기




Volumn 165, Issue , 2016, Pages 735-747

Exploiting sparsity of interconnections in spatio-temporal wind speed forecasting using Wavelet Transform

Author keywords

Compressive sensing; Spatial correlation; Wavelet Transform; Wind forecasting

Indexed keywords

COMPRESSED SENSING; ENERGY RESOURCES; FORECASTING; METEOROLOGY; RENEWABLE ENERGY RESOURCES; SIGNAL RECONSTRUCTION; TIME SERIES; WAVELET DECOMPOSITION; WAVELET TRANSFORMS; WIND;

EID: 84953432366     PISSN: 03062619     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apenergy.2015.12.082     Document Type: Article
Times cited : (162)

References (41)
  • 2
    • 84928946382 scopus 로고    scopus 로고
    • A computational framework for uncertainty integration in stochastic unit commitment with intermittent renewable energy sources
    • Quan H., Srinivasan D., Khambadkone A.M., Khosravi A. A computational framework for uncertainty integration in stochastic unit commitment with intermittent renewable energy sources. Appl Energy 2015, 152:71-82.
    • (2015) Appl Energy , vol.152 , pp. 71-82
    • Quan, H.1    Srinivasan, D.2    Khambadkone, A.M.3    Khosravi, A.4
  • 3
    • 62649119605 scopus 로고    scopus 로고
    • Tapping the energy storage potential in electric loads to deliver load following and regulation, with application to wind energy
    • Callaway D.S. Tapping the energy storage potential in electric loads to deliver load following and regulation, with application to wind energy. Energy Convers Manage 2009, 50(5):1389-1400.
    • (2009) Energy Convers Manage , vol.50 , Issue.5 , pp. 1389-1400
    • Callaway, D.S.1
  • 5
    • 84893369841 scopus 로고    scopus 로고
    • An adaptive load dispatching and forecasting strategy for a virtual power plant including renewable energy conversion units
    • Tascikaraoglu A., Erdinc O., Uzunoglu M., Karakas A. An adaptive load dispatching and forecasting strategy for a virtual power plant including renewable energy conversion units. Appl Energy 2014, 119:445-453.
    • (2014) Appl Energy , vol.119 , pp. 445-453
    • Tascikaraoglu, A.1    Erdinc, O.2    Uzunoglu, M.3    Karakas, A.4
  • 6
    • 77957201546 scopus 로고    scopus 로고
    • Technology roadmap: wind energy
    • International Energy Agency (IEA). Technology roadmap: wind energy; 2013 http://www.iea.org/publications/freepublications/publication/Wind_2013_Roadmap.pdf.
    • (2013)
  • 8
    • 84859612787 scopus 로고    scopus 로고
    • Short-term wind speed forecsating for power system operations
    • Zhu X., Genton M.G. Short-term wind speed forecsating for power system operations. Int Statist Rev 2012, 80(1):2-23.
    • (2012) Int Statist Rev , vol.80 , Issue.1 , pp. 2-23
    • Zhu, X.1    Genton, M.G.2
  • 9
    • 77953137822 scopus 로고    scopus 로고
    • On comparing three artificial neural networks for wind speed forecasting
    • Li G., Shi J. On comparing three artificial neural networks for wind speed forecasting. Appl Energy 2010, 87(7):2313-2320.
    • (2010) Appl Energy , vol.87 , Issue.7 , pp. 2313-2320
    • Li, G.1    Shi, J.2
  • 10
    • 84897459902 scopus 로고    scopus 로고
    • A review of combined approaches for prediction of short-term wind speed and power
    • Tascikaraoglu A., Uzunoglu M. A review of combined approaches for prediction of short-term wind speed and power. Renew Sustain Energy Rev 2014, 34:243-254.
    • (2014) Renew Sustain Energy Rev , vol.34 , pp. 243-254
    • Tascikaraoglu, A.1    Uzunoglu, M.2
  • 11
    • 84864797603 scopus 로고    scopus 로고
    • Performance analysis of four modified approaches for wind speed forecasting
    • Zhang W., Wu J., Wang J., Zhao W., Shen L. Performance analysis of four modified approaches for wind speed forecasting. Appl Energy 2012, 99:324-333.
    • (2012) Appl Energy , vol.99 , pp. 324-333
    • Zhang, W.1    Wu, J.2    Wang, J.3    Zhao, W.4    Shen, L.5
  • 12
    • 78649450621 scopus 로고    scopus 로고
    • Short-term wind power forecasting in Portugal by neural networks and wavelet transform
    • Catalão J., Pousinho H., Mendes V. Short-term wind power forecasting in Portugal by neural networks and wavelet transform. Renew Energy 2011, 36(4):1245-1251.
    • (2011) Renew Energy , vol.36 , Issue.4 , pp. 1245-1251
    • Catalão, J.1    Pousinho, H.2    Mendes, V.3
  • 13
    • 84875115854 scopus 로고    scopus 로고
    • Forecasting models for wind speed using wavelet, wavelet packet, time series and artificial neural networks
    • Liu H., Tian H.-Q., Pan D.-F., Li Y.-F. Forecasting models for wind speed using wavelet, wavelet packet, time series and artificial neural networks. Appl Energy 2013, 107:191-208.
    • (2013) Appl Energy , vol.107 , pp. 191-208
    • Liu, H.1    Tian, H.-Q.2    Pan, D.-F.3    Li, Y.-F.4
  • 14
    • 84864143531 scopus 로고    scopus 로고
    • Short-term wind-power prediction based on wavelet transform-support vector machine and statistic-characteristics analysis
    • Liu Y., Shi J., Yang Y., Lee W.-J. Short-term wind-power prediction based on wavelet transform-support vector machine and statistic-characteristics analysis. IEEE Trans Indust Appl 2012, 48(4):1136-1141.
    • (2012) IEEE Trans Indust Appl , vol.48 , Issue.4 , pp. 1136-1141
    • Liu, Y.1    Shi, J.2    Yang, Y.3    Lee, W.-J.4
  • 15
    • 84884126948 scopus 로고    scopus 로고
    • Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm
    • Liu D., Niu D., Wang H., Fan L. Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm. Renew Energy 2014, 62:592-597.
    • (2014) Renew Energy , vol.62 , pp. 592-597
    • Liu, D.1    Niu, D.2    Wang, H.3    Fan, L.4
  • 16
    • 84930940764 scopus 로고    scopus 로고
    • Wind speed prediction using the hybrid model of wavelet decomposition and artificial bee colony algorithm-based relevance vector machine
    • Fei S.-w., He Y. Wind speed prediction using the hybrid model of wavelet decomposition and artificial bee colony algorithm-based relevance vector machine. Int J Electr Power Energy Syst 2015, 73:625-631.
    • (2015) Int J Electr Power Energy Syst , vol.73 , pp. 625-631
    • Fei, S.-W.1    He, Y.2
  • 17
    • 84857017537 scopus 로고    scopus 로고
    • The assessment of the contribution of short-term wind power predictions to the efficiency of stand-alone hybrid systems
    • Tascikaraoglu A., Uzunoglu M., Vural B. The assessment of the contribution of short-term wind power predictions to the efficiency of stand-alone hybrid systems. Appl Energy 2012, 94:156-165.
    • (2012) Appl Energy , vol.94 , pp. 156-165
    • Tascikaraoglu, A.1    Uzunoglu, M.2    Vural, B.3
  • 18
    • 0033313265 scopus 로고    scopus 로고
    • Wind speed and power forecasting based on spatial correlation models
    • Alexiadis M., Dokopoulos P., Sahsamanoglou H. Wind speed and power forecasting based on spatial correlation models. IEEE Trans Energy Convers 1999, 14(3):836-842.
    • (1999) IEEE Trans Energy Convers , vol.14 , Issue.3 , pp. 836-842
    • Alexiadis, M.1    Dokopoulos, P.2    Sahsamanoglou, H.3
  • 19
    • 2942570109 scopus 로고    scopus 로고
    • A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation
    • Damousis I.G., Alexiadis M.C., Theocharis J.B., Dokopoulos P.S. A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation. IEEE Trans Energy Convers 2004, 19(2):352-361.
    • (2004) IEEE Trans Energy Convers , vol.19 , Issue.2 , pp. 352-361
    • Damousis, I.G.1    Alexiadis, M.C.2    Theocharis, J.B.3    Dokopoulos, P.S.4
  • 20
    • 33748872845 scopus 로고    scopus 로고
    • Calibrated probabilistic forecasting at the stateline wind energy center: the regime-switching space-time method
    • Gneiting T., Larson K., Westrick K., Genton M.G., Aldrich E. Calibrated probabilistic forecasting at the stateline wind energy center: the regime-switching space-time method. J Am Statist Assoc 2006, 101(475):968-979.
    • (2006) J Am Statist Assoc , vol.101 , Issue.475 , pp. 968-979
    • Gneiting, T.1    Larson, K.2    Westrick, K.3    Genton, M.G.4    Aldrich, E.5
  • 21
    • 77952557101 scopus 로고    scopus 로고
    • Powering up with space-time wind forecasting
    • Hering A.S., Genton M.G. Powering up with space-time wind forecasting. J Am Statist Assoc 2010, 105(489):92-104.
    • (2010) J Am Statist Assoc , vol.105 , Issue.489 , pp. 92-104
    • Hering, A.S.1    Genton, M.G.2
  • 22
    • 78751515195 scopus 로고    scopus 로고
    • Spatio-temporal analysis and modeling of short-term wind power forecast errors
    • Tastu J., Pinson P., Kotwa E., Madsen H., Nielsen H.A. Spatio-temporal analysis and modeling of short-term wind power forecast errors. Wind Energy 2011, 14(1):43-60.
    • (2011) Wind Energy , vol.14 , Issue.1 , pp. 43-60
    • Tastu, J.1    Pinson, P.2    Kotwa, E.3    Madsen, H.4    Nielsen, H.A.5
  • 23
    • 84859070373 scopus 로고    scopus 로고
    • Application of auto-regressive models to uk wind speed data for power system impact studies
    • Hill D.C., McMillan D., Bell K.R., Infield D. Application of auto-regressive models to uk wind speed data for power system impact studies. IEEE Trans Sustain Energy 2012, 3(1):134-141.
    • (2012) IEEE Trans Sustain Energy , vol.3 , Issue.1 , pp. 134-141
    • Hill, D.C.1    McMillan, D.2    Bell, K.R.3    Infield, D.4
  • 24
    • 84892599148 scopus 로고    scopus 로고
    • Short-term spatio-temporal wind power forecast in robust look-ahead power system dispatch
    • Xie L., Gu Y., Zhu X., Genton M.G. Short-term spatio-temporal wind power forecast in robust look-ahead power system dispatch. IEEE Trans Smart Grid 2014, 5(1):511-520.
    • (2014) IEEE Trans Smart Grid , vol.5 , Issue.1 , pp. 511-520
    • Xie, L.1    Gu, Y.2    Zhu, X.3    Genton, M.G.4
  • 25
    • 84907396383 scopus 로고    scopus 로고
    • Short-term spatio-temporal prediction of wind speed and direction
    • Dowell J., Weiss S., Hill D., Infield D. Short-term spatio-temporal prediction of wind speed and direction. Wind Energy 2014, 17(12):1945-1955.
    • (2014) Wind Energy , vol.17 , Issue.12 , pp. 1945-1955
    • Dowell, J.1    Weiss, S.2    Hill, D.3    Infield, D.4
  • 26
    • 84892622679 scopus 로고    scopus 로고
    • Probabilistic forecasts of wind power generation accounting for geographically dispersed information
    • Tastu J., Pinson P., Trombe P.-J., Madsen H. Probabilistic forecasts of wind power generation accounting for geographically dispersed information. IEEE Trans Smart Grid 2014, 5(1):480-489.
    • (2014) IEEE Trans Smart Grid , vol.5 , Issue.1 , pp. 480-489
    • Tastu, J.1    Pinson, P.2    Trombe, P.-J.3    Madsen, H.4
  • 27
    • 84903191929 scopus 로고    scopus 로고
    • A spatio-temporal analysis approach for short-term forecast of wind farm generation
    • He M., Yang L., Zhang J., Vittal V. A spatio-temporal analysis approach for short-term forecast of wind farm generation. IEEE Trans Power Syst 2014, 29(4):1611-1622.
    • (2014) IEEE Trans Power Syst , vol.29 , Issue.4 , pp. 1611-1622
    • He, M.1    Yang, L.2    Zhang, J.3    Vittal, V.4
  • 28
    • 77949570119 scopus 로고    scopus 로고
    • A hybrid statistical method to predict wind speed and wind power
    • Liu H., Tian H.-Q., Chen C., Li Y.-F. A hybrid statistical method to predict wind speed and wind power. Renew Energy 2010, 35(8):1857-1861.
    • (2010) Renew Energy , vol.35 , Issue.8 , pp. 1857-1861
    • Liu, H.1    Tian, H.-Q.2    Chen, C.3    Li, Y.-F.4
  • 29
    • 84922362244 scopus 로고    scopus 로고
    • The study and application of a novel hybrid forecasting model-a case study of wind speed forecasting in china
    • Wang J.-Z., Wang Y., Jiang P. The study and application of a novel hybrid forecasting model-a case study of wind speed forecasting in china. Appl Energy 2015, 143:472-488.
    • (2015) Appl Energy , vol.143 , pp. 472-488
    • Wang, J.-Z.1    Wang, Y.2    Jiang, P.3
  • 30
    • 57449087638 scopus 로고    scopus 로고
    • Short-term load forecasting of power systems by combination of wavelet transform and neuro-evolutionary algorithm
    • Amjady N., Keynia F. Short-term load forecasting of power systems by combination of wavelet transform and neuro-evolutionary algorithm. Energy 2009, 34(1):46-57.
    • (2009) Energy , vol.34 , Issue.1 , pp. 46-57
    • Amjady, N.1    Keynia, F.2
  • 31
    • 31744440684 scopus 로고    scopus 로고
    • Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information
    • Candès E., Romberg J., Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inform Theory 2006, 52(2):489-509.
    • (2006) IEEE Trans Inform Theory , vol.52 , Issue.2 , pp. 489-509
    • Candès, E.1    Romberg, J.2    Tao, T.3
  • 33
    • 5444237123 scopus 로고    scopus 로고
    • Greed is good: algorithmic results for sparse approximation
    • Tropp J. Greed is good: algorithmic results for sparse approximation. IEEE Trans Inform Theory 2004, 50(10):2231-2242.
    • (2004) IEEE Trans Inform Theory , vol.50 , Issue.10 , pp. 2231-2242
    • Tropp, J.1
  • 34
    • 62749175137 scopus 로고    scopus 로고
    • CoSaMP: iterative signal recovery from incomplete and inaccurate samples
    • Needell D., Tropp J. CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Appl Comput Harmonic Anal 2009, 26(3):301-321.
    • (2009) Appl Comput Harmonic Anal , vol.26 , Issue.3 , pp. 301-321
    • Needell, D.1    Tropp, J.2
  • 35
    • 70350743173 scopus 로고    scopus 로고
    • Robust recovery of signals from a structured union of subspaces
    • Eldar Y., Mishali M. Robust recovery of signals from a structured union of subspaces. IEEE Trans Inform Theory 2009, 55(11):5302-5316.
    • (2009) IEEE Trans Inform Theory , vol.55 , Issue.11 , pp. 5302-5316
    • Eldar, Y.1    Mishali, M.2
  • 36
    • 77952576986 scopus 로고    scopus 로고
    • Block-sparse signals: uncertainty relations and efficient recovery
    • Eldar Y.C., Kuppinger P., Bölcskei H. Block-sparse signals: uncertainty relations and efficient recovery. IEEE Trans Signal Process 2010, 58(6):3042-3054.
    • (2010) IEEE Trans Signal Process , vol.58 , Issue.6 , pp. 3042-3054
    • Eldar, Y.C.1    Kuppinger, P.2    Bölcskei, H.3
  • 38
    • 84940930489 scopus 로고    scopus 로고
    • ASOS historical data
    • Iowa Environmental Mesonet. ASOS historical data; 2014 http://mesonet.agron.iastate.edu/ASOS/.
    • (2014)
  • 39
    • 84901926562 scopus 로고    scopus 로고
    • Short-term wind speed forecasting with markov-switching model
    • Song Z., Jiang Y., Zhang Z. Short-term wind speed forecasting with markov-switching model. Appl Energy 2014, 130:103-112.
    • (2014) Appl Energy , vol.130 , pp. 103-112
    • Song, Z.1    Jiang, Y.2    Zhang, Z.3
  • 40
    • 34250762015 scopus 로고    scopus 로고
    • Application of artificial neural networks for the wind speed prediction of target station using reference stations data
    • Bilgili M., Sahin B., Yasar A. Application of artificial neural networks for the wind speed prediction of target station using reference stations data. Renew Energy 2007, 32(14):2350-2360.
    • (2007) Renew Energy , vol.32 , Issue.14 , pp. 2350-2360
    • Bilgili, M.1    Sahin, B.2    Yasar, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.