메뉴 건너뛰기




Volumn 130, Issue , 2014, Pages 103-112

Short-term wind speed forecasting with Markov-switching model

Author keywords

Forecasting; Markov chain; Regime switching; Time series; Wind power

Indexed keywords

BAYESIAN NETWORKS; INFERENCE ENGINES; MARKOV PROCESSES; MAXIMUM LIKELIHOOD ESTIMATION; NEURAL NETWORKS; SWITCHING; TIME SERIES; WIND; WIND POWER;

EID: 84901926562     PISSN: 03062619     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apenergy.2014.05.026     Document Type: Article
Times cited : (112)

References (40)
  • 1
    • 84884593014 scopus 로고    scopus 로고
    • Prediction, operations, and condition monitoring in wind energy
    • Kusiak A., Zhang Z., Verma A. Prediction, operations, and condition monitoring in wind energy. Energy 2013, 60(1):1-12.
    • (2013) Energy , vol.60 , Issue.1 , pp. 1-12
    • Kusiak, A.1    Zhang, Z.2    Verma, A.3
  • 2
    • 84877314417 scopus 로고    scopus 로고
    • Wind turbine frontier from SCADA
    • Kusiak A., Verma A., Wei X. Wind turbine frontier from SCADA. Wind Syst Mag 2012, 3(9):36-39.
    • (2012) Wind Syst Mag , vol.3 , Issue.9 , pp. 36-39
    • Kusiak, A.1    Verma, A.2    Wei, X.3
  • 3
    • 0021479290 scopus 로고
    • Time series models to simulate and forecast wind speed and wind power
    • Brown B.G., Katz R.W., Murphy A.H. Time series models to simulate and forecast wind speed and wind power. J Climate Appl Meteorol 1984, 23(8):1184-1195.
    • (1984) J Climate Appl Meteorol , vol.23 , Issue.8 , pp. 1184-1195
    • Brown, B.G.1    Katz, R.W.2    Murphy, A.H.3
  • 4
    • 20444437286 scopus 로고    scopus 로고
    • Forecast of hourly average wind speed with ARMA models in Navarre (Spain)
    • Torres J.T., Garcia A., De Blas M., De Francisco A. Forecast of hourly average wind speed with ARMA models in Navarre (Spain). Sol Energy 2005, 70(1):65-77.
    • (2005) Sol Energy , vol.70 , Issue.1 , pp. 65-77
    • Torres, J.T.1    Garcia, A.2    De Blas, M.3    De Francisco, A.4
  • 5
    • 58949103845 scopus 로고    scopus 로고
    • Day-ahead wind speed forecasting using f-ARIMA models
    • Kavasseri R.G., Seetharaman K. Day-ahead wind speed forecasting using f-ARIMA models. Renew Energy 2009, 34(5):1388-1393.
    • (2009) Renew Energy , vol.34 , Issue.5 , pp. 1388-1393
    • Kavasseri, R.G.1    Seetharaman, K.2
  • 6
    • 78650562310 scopus 로고    scopus 로고
    • ARMA based approaches for forecasting the tuple of wind speed and direction
    • Erdem E., Shi J. ARMA based approaches for forecasting the tuple of wind speed and direction. Appl Energy 2011, 88(4):1405-1414.
    • (2011) Appl Energy , vol.88 , Issue.4 , pp. 1405-1414
    • Erdem, E.1    Shi, J.2
  • 7
    • 84856532432 scopus 로고    scopus 로고
    • Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China
    • Zhao P., Wang J., Xia J., Dai Y., Sheng Y., Yue J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renew Energy 2012, 43:234-241.
    • (2012) Renew Energy , vol.43 , pp. 234-241
    • Zhao, P.1    Wang, J.2    Xia, J.3    Dai, Y.4    Sheng, Y.5    Yue, J.6
  • 8
    • 33846310789 scopus 로고    scopus 로고
    • Time series analysis of wind speed using VAR and the generalized impulse response technique
    • Ewing B.T., Kruse J.B., Schroeder J.L., Smith D.A. Time series analysis of wind speed using VAR and the generalized impulse response technique. J Wind Eng Ind Aerodyn 2007, 95(3):209-219.
    • (2007) J Wind Eng Ind Aerodyn , vol.95 , Issue.3 , pp. 209-219
    • Ewing, B.T.1    Kruse, J.B.2    Schroeder, J.L.3    Smith, D.A.4
  • 9
    • 84864797603 scopus 로고    scopus 로고
    • Performance analysis of four modified approaches for wind speed forecasting
    • Zhang W., Wu J., Wang J., Zhao W., Shen L. Performance analysis of four modified approaches for wind speed forecasting. Appl Energy 2012, 99:324-333.
    • (2012) Appl Energy , vol.99 , pp. 324-333
    • Zhang, W.1    Wu, J.2    Wang, J.3    Zhao, W.4    Shen, L.5
  • 10
    • 7344226186 scopus 로고    scopus 로고
    • NASA scatterometer provides global ocean-surface wind fields with more structures than numerical weather prediction
    • Liu W.T., Tang W., Polito P.S. NASA scatterometer provides global ocean-surface wind fields with more structures than numerical weather prediction. Geophys Res Lett 1998, 25(6):761-764.
    • (1998) Geophys Res Lett , vol.25 , Issue.6 , pp. 761-764
    • Liu, W.T.1    Tang, W.2    Polito, P.S.3
  • 11
    • 34447100742 scopus 로고    scopus 로고
    • Correction and downscaling of NWP wind speed forecasts
    • Howard T., Clark P. Correction and downscaling of NWP wind speed forecasts. Meteorol Appl 2007, 14(2):105-116.
    • (2007) Meteorol Appl , vol.14 , Issue.2 , pp. 105-116
    • Howard, T.1    Clark, P.2
  • 12
    • 70049104692 scopus 로고    scopus 로고
    • Anticipatory control of wind turbines with data-driven predictive models
    • Kusiak A., Song Z., Zheng H. Anticipatory control of wind turbines with data-driven predictive models. IEEE Trans Energy Convers 2009, 24(3):766-774.
    • (2009) IEEE Trans Energy Convers , vol.24 , Issue.3 , pp. 766-774
    • Kusiak, A.1    Song, Z.2    Zheng, H.3
  • 13
    • 61649090211 scopus 로고    scopus 로고
    • Short-term prediction of wind farm power: a data-mining approach
    • Kusiak A., Zheng H., Song Z. Short-term prediction of wind farm power: a data-mining approach. IEEE Trans Energy Convers 2009, 24(1):125-136.
    • (2009) IEEE Trans Energy Convers , vol.24 , Issue.1 , pp. 125-136
    • Kusiak, A.1    Zheng, H.2    Song, Z.3
  • 14
    • 79959471946 scopus 로고    scopus 로고
    • Virtual wind speed sensor for wind turbines
    • Kusiak A., Zheng H., Zhang Z. Virtual wind speed sensor for wind turbines. ASCE J Energy Eng 2010, 137(2):59-69.
    • (2010) ASCE J Energy Eng , vol.137 , Issue.2 , pp. 59-69
    • Kusiak, A.1    Zheng, H.2    Zhang, Z.3
  • 17
    • 84875115854 scopus 로고    scopus 로고
    • Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks
    • Liu H., Tian H., Pan D., Li Y. Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks. Appl Energy 2013, 107:191-208.
    • (2013) Appl Energy , vol.107 , pp. 191-208
    • Liu, H.1    Tian, H.2    Pan, D.3    Li, Y.4
  • 18
    • 84860254202 scopus 로고    scopus 로고
    • A method for short-term wind power prediction with multiple observation points
    • Khalid M., Savkin A.V. A method for short-term wind power prediction with multiple observation points. IEEE Trans Power Syst 2012, 27(2):579-586.
    • (2012) IEEE Trans Power Syst , vol.27 , Issue.2 , pp. 579-586
    • Khalid, M.1    Savkin, A.V.2
  • 19
    • 84859036543 scopus 로고    scopus 로고
    • AWNN-assisted wind power forecasting using feed-forward neural network
    • Bhaskar K., Singh S.N. AWNN-assisted wind power forecasting using feed-forward neural network. IEEE Trans Sustain Energy 2012, 3(2):306-315.
    • (2012) IEEE Trans Sustain Energy , vol.3 , Issue.2 , pp. 306-315
    • Bhaskar, K.1    Singh, S.N.2
  • 20
    • 84875093131 scopus 로고    scopus 로고
    • A comparison between the ECMWF and COSMO ensemble prediction systems applied to short-term wind power forecasting on real data
    • Alessandrini S., Sperati S., Pinson P. A comparison between the ECMWF and COSMO ensemble prediction systems applied to short-term wind power forecasting on real data. Appl Energy 2013, 107:271-280.
    • (2013) Appl Energy , vol.107 , pp. 271-280
    • Alessandrini, S.1    Sperati, S.2    Pinson, P.3
  • 21
    • 58149474856 scopus 로고    scopus 로고
    • Accurate short-term wind speed prediction by exploiting diversity in input data using banks of artificial neural networks
    • Salcedo-Sanz S., Perez-Bellido A.M., Ortiz-Garcia E.G., Portilla-Figueras A., Prieto L., Correoso F. Accurate short-term wind speed prediction by exploiting diversity in input data using banks of artificial neural networks. Neurocomputing 2009, 72(4-6):1336-1341.
    • (2009) Neurocomputing , vol.72 , Issue.4-6 , pp. 1336-1341
    • Salcedo-Sanz, S.1    Perez-Bellido, A.M.2    Ortiz-Garcia, E.G.3    Portilla-Figueras, A.4    Prieto, L.5    Correoso, F.6
  • 22
    • 79952454042 scopus 로고    scopus 로고
    • Multiple architecture system for wind speed prediction
    • Bouzgou H., Benoudjit N. Multiple architecture system for wind speed prediction. Appl Energy 2011, 88(7):2463-2471.
    • (2011) Appl Energy , vol.88 , Issue.7 , pp. 2463-2471
    • Bouzgou, H.1    Benoudjit, N.2
  • 23
    • 54149110925 scopus 로고    scopus 로고
    • A new strategy for wind speed forecasting using artificial intelligent methods
    • Monfared M., Rastegar H., Kojabadi H.M. A new strategy for wind speed forecasting using artificial intelligent methods. Renew Energy 2009, 34(3):845-848.
    • (2009) Renew Energy , vol.34 , Issue.3 , pp. 845-848
    • Monfared, M.1    Rastegar, H.2    Kojabadi, H.M.3
  • 24
    • 77949570119 scopus 로고    scopus 로고
    • A hybrid statistical method to predict wind speed and wind power
    • Liu H., Tian H., Chen C., Li Y. A hybrid statistical method to predict wind speed and wind power. Renew Energy 2010, 35(8):1857-1861.
    • (2010) Renew Energy , vol.35 , Issue.8 , pp. 1857-1861
    • Liu, H.1    Tian, H.2    Chen, C.3    Li, Y.4
  • 25
    • 14344258897 scopus 로고    scopus 로고
    • On-line assessment of prediction risk for wind power production forecasts
    • Pinson P., Kariniotakis G. On-line assessment of prediction risk for wind power production forecasts. Wind Energy 2004, 7(2):119-132.
    • (2004) Wind Energy , vol.7 , Issue.2 , pp. 119-132
    • Pinson, P.1    Kariniotakis, G.2
  • 26
    • 84859596365 scopus 로고    scopus 로고
    • Using conditional Kernel density estimation for wind power density forecasting
    • Jeon J., Taylor J.W. Using conditional Kernel density estimation for wind power density forecasting. J Am Stat Assoc 2012, 107(497):65-79.
    • (2012) J Am Stat Assoc , vol.107 , Issue.497 , pp. 65-79
    • Jeon, J.1    Taylor, J.W.2
  • 27
    • 84865557377 scopus 로고    scopus 로고
    • Very short-term wind speed forecasting with Bayesian structural break model
    • Jiang Y., Song Z., Kusiak A. Very short-term wind speed forecasting with Bayesian structural break model. Renew Energy 2013, 50:637-647.
    • (2013) Renew Energy , vol.50 , pp. 637-647
    • Jiang, Y.1    Song, Z.2    Kusiak, A.3
  • 28
    • 0002818041 scopus 로고
    • A Markov model for switching regressions
    • Goldfeld S.M., Quandt R.E. A Markov model for switching regressions. J Econom 1973, 1(1):3-16.
    • (1973) J Econom , vol.1 , Issue.1 , pp. 3-16
    • Goldfeld, S.M.1    Quandt, R.E.2
  • 29
    • 0001342006 scopus 로고
    • A new approach to the economic analysis of nonstationary time series and the business cycle
    • Hamilton J.D. A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica 1989, 57(2):357-384.
    • (1989) Econometrica , vol.57 , Issue.2 , pp. 357-384
    • Hamilton, J.D.1
  • 30
    • 0039447737 scopus 로고    scopus 로고
    • Has the U.S. economy become more stable? A Bayesian approach based on a markov-switching model of the business cycle
    • Kim C.J., Nelson C.R. Has the U.S. economy become more stable? A Bayesian approach based on a markov-switching model of the business cycle. Rev Econ Stat 1999, 81(4):608-616.
    • (1999) Rev Econ Stat , vol.81 , Issue.4 , pp. 608-616
    • Kim, C.J.1    Nelson, C.R.2
  • 31
    • 0030525596 scopus 로고    scopus 로고
    • An analysis of the real interest rate under regime shifts
    • Garcia R., Perron P. An analysis of the real interest rate under regime shifts. Rev Econ Stat 1996, 78(1):111-125.
    • (1996) Rev Econ Stat , vol.78 , Issue.1 , pp. 111-125
    • Garcia, R.1    Perron, P.2
  • 32
    • 21144474215 scopus 로고
    • Inflation Regimes and the Sources of Inflation Uncertainty
    • Evans M., Wachtel P. Inflation Regimes and the Sources of Inflation Uncertainty. J Money Credit Bank 1993, 25(3):475-551.
    • (1993) J Money Credit Bank , vol.25 , Issue.3 , pp. 475-551
    • Evans, M.1    Wachtel, P.2
  • 33
    • 33748872845 scopus 로고    scopus 로고
    • Calibrated probabilistic forecasting at the stateline wind energy center: the regime-switching space-time method
    • Gneiting T., Larson K., Westrick K., Genton M.G., Aldrich E.M. Calibrated probabilistic forecasting at the stateline wind energy center: the regime-switching space-time method. J Am Stat Assoc 2006, 101(475):968-979.
    • (2006) J Am Stat Assoc , vol.101 , Issue.475 , pp. 968-979
    • Gneiting, T.1    Larson, K.2    Westrick, K.3    Genton, M.G.4    Aldrich, E.M.5
  • 35
    • 84861064867 scopus 로고    scopus 로고
    • Adaptive modeling and forecasting of offshore wind power fluctuations with Markov-switching autoregressive models
    • Pinson P., Madsen H. Adaptive modeling and forecasting of offshore wind power fluctuations with Markov-switching autoregressive models. J Forecast 2012, 31(4):281-313.
    • (2012) J Forecast , vol.31 , Issue.4 , pp. 281-313
    • Pinson, P.1    Madsen, H.2
  • 36
    • 62549124830 scopus 로고    scopus 로고
    • Regime-switching models
    • Palgrave Macmillan, S.N. Durlauf, L.E. Blume (Eds.)
    • Hamilton J.D. Regime-switching models. The New Palgrave Dictionary of Economics 2008, 1-15. Palgrave Macmillan. 2nd. S.N. Durlauf, L.E. Blume (Eds.).
    • (2008) The New Palgrave Dictionary of Economics , pp. 1-15
    • Hamilton, J.D.1
  • 37
    • 55549084723 scopus 로고
    • Bayes inference via Gibbs sampling of autoregressive time series subject to Markov mean and variance shifts
    • Albert J., Chib S. Bayes inference via Gibbs sampling of autoregressive time series subject to Markov mean and variance shifts. J Bus Econ Stat 1993, 11(1):1-15.
    • (1993) J Bus Econ Stat , vol.11 , Issue.1 , pp. 1-15
    • Albert, J.1    Chib, S.2
  • 38
    • 0003107701 scopus 로고    scopus 로고
    • Calculating posterior distributions and modal estimates in markov mixture models
    • Chib S. Calculating posterior distributions and modal estimates in markov mixture models. J Econom 1996, 75(1):79-97.
    • (1996) J Econom , vol.75 , Issue.1 , pp. 79-97
    • Chib, S.1
  • 39
    • 0041974049 scopus 로고
    • Marginal likelihood from the Gibbs output
    • Chib S. Marginal likelihood from the Gibbs output. J Am Stat Assoc 1995, 90(432):1313-1321.
    • (1995) J Am Stat Assoc , vol.90 , Issue.432 , pp. 1313-1321
    • Chib, S.1
  • 40
    • 78650940664 scopus 로고    scopus 로고
    • Quantiles as optimal point forecasts
    • Gneiting T. Quantiles as optimal point forecasts. Int J Forecast 2011, 27(2):197-207.
    • (2011) Int J Forecast , vol.27 , Issue.2 , pp. 197-207
    • Gneiting, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.