메뉴 건너뛰기




Volumn 35, Issue 1, 2015, Pages

3D mesh labeling via deep convolutional neural networks

Author keywords

3D mesh labeling; Deep convolutional neural networks; Geometry features

Indexed keywords

CONVOLUTION; GEOMETRY; GRAPHIC METHODS; MESH GENERATION; NEURAL NETWORKS;

EID: 84953296795     PISSN: 07300301     EISSN: 15577368     Source Type: Journal    
DOI: 10.1145/2835487     Document Type: Article
Times cited : (242)

References (47)
  • 1
    • 84861454670 scopus 로고    scopus 로고
    • Mesh segmentation with concavity-aware fields
    • O. K.-C. Au, Y. Zheng, M. Chen, P. Xu, and C.-L. Tai. 2012. Mesh segmentation with concavity-aware fields. IEEE TVCG 18, 7, 1125-1134.
    • (2012) IEEE TVCG , vol.18 , Issue.7 , pp. 1125-1134
    • Au, O.K.-C.1    Zheng, Y.2    Chen, M.3    Xu, P.4    Tai, C.-L.5
  • 3
    • 0036538619 scopus 로고    scopus 로고
    • Shape matching and object recognition using shape contexts
    • S. Belongie, J. Malik, and J. Puzicha. 2002. Shape matching and object recognition using shape contexts. IEEE TPAMI 24, 4, 509-522.
    • (2002) IEEE TPAMI , vol.24 , Issue.4 , pp. 509-522
    • Belongie, S.1    Malik, J.2    Puzicha, J.3
  • 4
    • 78649285067 scopus 로고    scopus 로고
    • Characterizing shape using conformal factors
    • M. Ben-Chen and C. Gotsman. 2008. Characterizing shape using conformal factors. In Proc. Eurographics 3DOR. 1-8.
    • (2008) Proc. Eurographics 3DOR , pp. 1-8
    • Ben-Chen, M.1    Gotsman, C.2
  • 6
    • 0035509961 scopus 로고    scopus 로고
    • Fast approximate energy minimization via graph cuts
    • Y. Boykov, O. Veksler, and R. Zabih. 2001. Fast approximate energy minimization via graph cuts. IEEE TPAMI 23, 11, 1222-1239.
    • (2001) IEEE TPAMI , vol.23 , Issue.11 , pp. 1222-1239
    • Boykov, Y.1    Veksler, O.2    Zabih, R.3
  • 8
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: A library for support vector machines
    • C.-C. Chang and C.-J. Lin. 2011. LIBSVM: A library for support vector machines. ACM TIST 2, 27:1-27:27.
    • (2011) ACM TIST , vol.2 , pp. 271-2727
    • Chang, C.-C.1    Lin, C.-J.2
  • 9
    • 84893902414 scopus 로고    scopus 로고
    • Software available at www.csie.ntu.edu.tw/?cjlin/libsvm.
    • Software
  • 10
  • 11
    • 84887990509 scopus 로고    scopus 로고
    • Deformable model for estimating clothed and naked human shapes from a single image
    • X. Chen, Y. Guo, B. Zhou, and Q. Zhao. 2013. Deformable model for estimating clothed and naked human shapes from a single image. The Visual Computer 29, 11, 1187-1196.
    • (2013) The Visual Computer , vol.29 , Issue.11 , pp. 1187-1196
    • Chen, X.1    Guo, Y.2    Zhou, B.3    Zhao, Q.4
  • 14
    • 33744966595 scopus 로고    scopus 로고
    • Switching dynamic system models for speech articulation and acoustics
    • Springer
    • L. Deng. 2004. Switching dynamic system models for speech articulation and acoustics. In Proceedings of the IMA Workshop. Springer, 115-134.
    • (2004) Proceedings of the IMA Workshop , pp. 115-134
    • Deng, L.1
  • 15
    • 84876258641 scopus 로고    scopus 로고
    • Learning hierarchical features for scene labeling
    • C. Farabet, C. Couprie, L. Najman, and Y. Lecun. 2013. Learning hierarchical features for scene labeling. IEEE TPAMI 35, 8, 1915-1929.
    • (2013) IEEE TPAMI , vol.35 , Issue.8 , pp. 1915-1929
    • Farabet, C.1    Couprie, C.2    Najman, L.3    Lecun, Y.4
  • 16
    • 33646264578 scopus 로고    scopus 로고
    • Salient geometric features for partial shape matching and similarity
    • R. Gal and D. Cohen-Or. 2006. Salient geometric features for partial shape matching and similarity. ACM Trans. Graph. 25, 1, 130-150.
    • (2006) ACM Trans. Graph. , vol.25 , Issue.1 , pp. 130-150
    • Gal, R.1    Cohen-Or, D.2
  • 17
    • 0035156965 scopus 로고    scopus 로고
    • Topology matching for fully automatic similarity estimation of 3D shapes
    • M. Hilaga, Y. Shinagawa, T. Kohmura, and T. L. Kunii. 2001. Topology matching for fully automatic similarity estimation of 3D shapes. In Proc. SIGGRAPH. 203-212.
    • (2001) Proc. SIGGRAPH , pp. 203-212
    • Hilaga, M.1    Shinagawa, Y.2    Kohmura, T.3    Kunii, T.L.4
  • 18
    • 84861125212 scopus 로고    scopus 로고
    • A practical guide to training restricted Boltzmann machines
    • G. Hinton. 2010. A practical guide to training restricted Boltzmann machines. Momentum 9, 1, 926.
    • (2010) Momentum , vol.9 , Issue.1 , pp. 926
    • Hinton, G.1
  • 19
    • 84870188991 scopus 로고    scopus 로고
    • Co-segmentation of 3D shapes via subspace clustering
    • R. Hu, L. Fan, and L. Liu. 2012. Co-segmentation of 3D shapes via subspace clustering. CGF 31, 5, 1703-1713.
    • (2012) CGF , vol.31 , Issue.5 , pp. 1703-1713
    • Hu, R.1    Fan, L.2    Liu, L.3
  • 20
    • 82455171688 scopus 로고    scopus 로고
    • Joint shape segmentation with linear programming
    • Q. Huang, V. Koltun, and L. Guibas. 2011. Joint shape segmentation with linear programming. ACM Trans. Graph. 30, 6, 125:1-125:12.
    • (2011) ACM Trans. Graph. , vol.30 , Issue.6 , pp. 1251-12512
    • Huang, Q.1    Koltun, V.2    Guibas, L.3
  • 21
    • 84887853525 scopus 로고    scopus 로고
    • Fine-grained semisupervised labeling of large shape collections
    • Q.-X. Huang, H. Su, and L. Guibas. 2013. Fine-grained semisupervised labeling of large shape collections. ACM Trans. Graph. 32, 6, 190:1-190:10.
    • (2013) ACM Trans. Graph. , vol.32 , Issue.6 , pp. 1901-19010
    • Huang, Q.-X.1    Su, H.2    Guibas, L.3
  • 22
    • 63049090164 scopus 로고    scopus 로고
    • Shape decomposition using modal analysis
    • Q.-X. Huang, M. Wicke, B. Adams, and L. Guibas. 2009. Shape decomposition using modal analysis. CGF 28, 2, 407-416.
    • (2009) CGF , vol.28 , Issue.2 , pp. 407-416
    • Huang, Q.-X.1    Wicke, M.2    Adams, B.3    Guibas, L.4
  • 23
    • 0032685832 scopus 로고    scopus 로고
    • Using spin images for efficient object recognition in cluttered 3D scenes
    • A. E. Johnson and M. Hebert. 1999. Using spin images for efficient object recognition in cluttered 3D scenes. IEEE TPAMI 21, 5, 433-449.
    • (1999) IEEE TPAMI , vol.21 , Issue.5 , pp. 433-449
    • Johnson, A.E.1    Hebert, M.2
  • 24
    • 77956356126 scopus 로고    scopus 로고
    • Learning 3D mesh segmentation and labeling
    • E. Kalogerakis, A. Hertzmann, and K. Singh. 2010. Learning 3D mesh segmentation and labeling. ACM Trans. Graph. 29, 4, 102:1-102:12.
    • (2010) ACM Trans. Graph. , vol.29 , Issue.4 , pp. 1021-10212
    • Kalogerakis, E.1    Hertzmann, A.2    Singh, K.3
  • 25
    • 33646063839 scopus 로고    scopus 로고
    • Hierarchical mesh decomposition using fuzzy clustering and cuts
    • S. Katz and A. Tal. 2003. Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Trans. Graph. 22, 3, 954-961.
    • (2003) ACM Trans. Graph. , vol.22 , Issue.3 , pp. 954-961
    • Katz, S.1    Tal, A.2
  • 26
    • 70450177775 scopus 로고    scopus 로고
    • Learning invariant features through topographic filter maps
    • K. Kavukcuoglu, M. Ranzato, R. Fergus, and Y. Lecun. 2009. Learning invariant features through topographic filter maps. In Proc. CVPR. 1605-1612.
    • (2009) Proc. CVPR , pp. 1605-1612
    • Kavukcuoglu, K.1    Ranzato, M.2    Fergus, R.3    Lecun, Y.4
  • 29
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. 2012. Imagenet classification with deep convolutional neural networks. In Proc. NIPS. 1106-1114.
    • (2012) Proc. NIPS , pp. 1106-1114
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 30
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • J. D. Lafferty, A. McCallum, and F. C. N. Pereira. 2001. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In Proc. ICML. 282-289.
    • (2001) Proc. ICML , pp. 282-289
    • Lafferty, J.D.1    McCallum, A.2    Pereira, F.C.N.3
  • 31
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. 2009. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In Proc. ICML. 609-616.
    • (2009) Proc. ICML , pp. 609-616
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 32
    • 63049086124 scopus 로고    scopus 로고
    • A part-aware surface metric for shape analysis
    • R. Liu, H. Zhang, A. Shamir, and D. Cohen-Or. 2009. A part-aware surface metric for shape analysis. CGF 28, 2, 397-406.
    • (2009) CGF , vol.28 , Issue.2 , pp. 397-406
    • Liu, R.1    Zhang, H.2    Shamir, A.3    Cohen-Or, D.4
  • 33
    • 84879808999 scopus 로고    scopus 로고
    • Semi-supervised mesh segmentation and labeling
    • J. Lv, X. Chen, J. Huang, and H. Bao. 2012. Semi-supervised mesh segmentation and labeling. CGF 31, 7, 2241-2248.
    • (2012) CGF , vol.31 , Issue.7 , pp. 2241-2248
    • Lv, J.1    Chen, X.2    Huang, J.3    Bao, H.4
  • 34
    • 52249097028 scopus 로고    scopus 로고
    • Nonlinear image representation using divisive normalization
    • S. Lyu and E. P. Simoncelli. 2008. Nonlinear image representation using divisive normalization. In Proc. CVPR. 1-8.
    • (2008) Proc. CVPR , pp. 1-8
    • Lyu, S.1    Simoncelli, E.P.2
  • 35
    • 77953286572 scopus 로고    scopus 로고
    • Contextual part analogies in 3D objects
    • L. Shapira, S. Shalom, A. Shamir, D. Cohen-Or, and H. Zhang. 2010. Contextual part analogies in 3D objects. IJCV 89, 2-3, 309-326.
    • (2010) IJCV , vol.89 , Issue.2-3 , pp. 309-326
    • Shapira, L.1    Shalom, S.2    Shamir, A.3    Cohen-Or, D.4    Zhang, H.5
  • 36
    • 82455162710 scopus 로고    scopus 로고
    • Unsupervised co-segmentation of a set of shapes via descriptor-space spectral clustering
    • O. Sidi, O. Van Kaick, Y. Kleiman, H. Zhang, and D. Cohen-Or. 2011. Unsupervised co-segmentation of a set of shapes via descriptor-space spectral clustering. ACM Trans. Graph. 30, 6, 126:1-126:10.
    • (2011) ACM Trans. Graph. , vol.30 , Issue.6 , pp. 1261-12610
    • Sidi, O.1    Van Kaick, O.2    Kleiman, Y.3    Zhang, H.4    Cohen-Or, D.5
  • 37
    • 84877789646 scopus 로고    scopus 로고
    • Convolutional-recursive deep learning for 3D object classification
    • R. Socher, B. Huval, B. P. Bath, C. D. Manning, and A. Y. Ng. 2012. Convolutional-recursive deep learning for 3D object classification. In Proc. NIPS. 665-673.
    • (2012) Proc. NIPS , pp. 665-673
    • Socher, R.1    Huval, B.2    Bath, B.P.3    Manning, C.D.4    Ng, A.Y.5
  • 38
    • 34047200109 scopus 로고    scopus 로고
    • Sharing visual features for multiclass and multiview object detection
    • A. Torralba, K. P. Murphy, and W. T. Freeman. 2007. Sharing visual features for multiclass and multiview object detection. IEEE TPAMI 29, 5, 854-869.
    • (2007) IEEE TPAMI , vol.29 , Issue.5 , pp. 854-869
    • Torralba, A.1    Murphy, K.P.2    Freeman, W.T.3
  • 43
    • 84906679085 scopus 로고    scopus 로고
    • 3D shape segmentation and labeling via extreme learning machine
    • Z. Xie, K. Xu, L. Liu, and Y. Xiong. 2014. 3D shape segmentation and labeling via extreme learning machine. CGF 33, 5, 85-95.
    • (2014) CGF , vol.33 , Issue.5 , pp. 85-95
    • Xie, Z.1    Xu, K.2    Liu, L.3    Xiong, Y.4
  • 44
    • 84883103811 scopus 로고    scopus 로고
    • Boundary-aware multidomain subspace deformation
    • Y. Yang, W. Xu, X. Guo, K. Zhou, and B. Guo. 2013. Boundary-aware multidomain subspace deformation. IEEE TVCG 19, 10, 1633.
    • (2013) IEEE TVCG , vol.19 , Issue.10 , pp. 1633
    • Yang, Y.1    Xu, W.2    Guo, X.3    Zhou, K.4    Guo, B.5
  • 45
    • 84877590918 scopus 로고    scopus 로고
    • Mesh editing with poisson-based gradient field manipulation
    • Y. Yu, K. Zhou, D. Xu, X. Shi, H. Bao, B. Guo, and H.-Y. Shum. 2004. Mesh editing with poisson-based gradient field manipulation. ACMTrans. Graph. 23, 3, 644-651.
    • (2004) ACMTrans. Graph. , vol.23 , Issue.3 , pp. 644-651
    • Yu, Y.1    Zhou, K.2    Xu, D.3    Shi, X.4    Bao, H.5    Guo, B.6    Shum, H.-Y.7
  • 46
    • 84856686379 scopus 로고    scopus 로고
    • Adaptive deconvolutional networks for mid and high level feature learning
    • M. D. Zeiler, G. W. Taylor, and R. Fergus. 2011. Adaptive deconvolutional networks for mid and high level feature learning. In Proc. ICCV. 2018-2025.
    • (2011) Proc. ICCV , pp. 2018-2025
    • Zeiler, M.D.1    Taylor, G.W.2    Fergus, R.3
  • 47
    • 84863449816 scopus 로고    scopus 로고
    • Variationalmesh decomposition
    • J. Zhang, J. Zheng, C. Wu, and J. Cai. 2012. Variationalmesh decomposition. ACM Trans. Graph. 31, 3, 21:1-21:14.
    • (2012) ACM Trans. Graph. , vol.31 , Issue.3 , pp. 211-2114
    • Zhang, J.1    Zheng, J.2    Wu, C.3    Cai, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.