메뉴 건너뛰기




Volumn 34, Issue , 2016, Pages 80-87

Efficient utilization of pentoses for bioproduction of the renewable two-carbon compounds ethylene glycol and glycolate

Author keywords

Ethylene glycol; Glycolate; Hemicellulose; Metabolic engineering; Renewable; Xylose

Indexed keywords

BIOCHEMISTRY; BIOLOGICAL MATERIALS; CELLULOSE; ESCHERICHIA COLI; ETHYLENE; LIGNIN; METABOLIC ENGINEERING; POLYOLS; STRAIN; XYLOSE;

EID: 84953285830     PISSN: 10967176     EISSN: 10967184     Source Type: Journal    
DOI: 10.1016/j.ymben.2015.12.004     Document Type: Article
Times cited : (90)

References (38)
  • 1
    • 77957329119 scopus 로고    scopus 로고
    • Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli
    • Ajikumar P.K., et al. Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science 2010, 330:70-74.
    • (2010) Science , vol.330 , pp. 70-74
    • Ajikumar, P.K.1
  • 2
    • 84940759892 scopus 로고    scopus 로고
    • Optimization of ethylene glycol production from (d)-xylose via a synthetic pathway implemented in Escherichia coli
    • Alkim C., et al. Optimization of ethylene glycol production from (d)-xylose via a synthetic pathway implemented in Escherichia coli. Microb. Cell Fact. 2015, 14:127.
    • (2015) Microb. Cell Fact. , vol.14 , pp. 127
    • Alkim, C.1
  • 3
    • 0026323075 scopus 로고
    • L-Lyxose metabolism employs the L-rhamnose pathway in mutant cells of Escherichia coli adapted to grow on L-lyxose
    • Badía J., et al. L-Lyxose metabolism employs the L-rhamnose pathway in mutant cells of Escherichia coli adapted to grow on L-lyxose. J. Bacteriol. 1991, 173:5144-5150.
    • (1991) J. Bacteriol. , vol.173 , pp. 5144-5150
    • Badía, J.1
  • 4
    • 0023799552 scopus 로고
    • Metabolism of L-fucose and L-rhamnose in Escherichia coli: aerobic-anaerobic regulation of L-lactaldehyde dissimilation
    • Baldomà L., Aguilar J. Metabolism of L-fucose and L-rhamnose in Escherichia coli: aerobic-anaerobic regulation of L-lactaldehyde dissimilation. J. Bacteriol. 1988, 170:416-421.
    • (1988) J. Bacteriol. , vol.170 , pp. 416-421
    • Baldomà, L.1    Aguilar, J.2
  • 5
    • 0021112142 scopus 로고
    • Identification of lactaldehyde dehydrogenase and glycolaldehyde dehydrogenase as functions of the same protein in Escherichia coli
    • Caballero E., Baldomà L., Ros J., Boronat A., Aguilar J. Identification of lactaldehyde dehydrogenase and glycolaldehyde dehydrogenase as functions of the same protein in Escherichia coli. J. Biol. Chem. 1983, 258:7788-7792.
    • (1983) J. Biol. Chem. , vol.258 , pp. 7788-7792
    • Caballero, E.1    Baldomà, L.2    Ros, J.3    Boronat, A.4    Aguilar, J.5
  • 6
    • 84978511515 scopus 로고    scopus 로고
    • Engineering of a synthetic metabolic pathway for the assimilation of (D)-xylose into value-added chemicals
    • Advance online publication
    • Cam Y., et al. Engineering of a synthetic metabolic pathway for the assimilation of (D)-xylose into value-added chemicals. ACS Synth. Biol. 2015, Advance online publication. 10.1021/acssynbio.5b00103.
    • (2015) ACS Synth. Biol.
    • Cam, Y.1
  • 7
    • 0025006466 scopus 로고
    • Oxygen regulation of L-1,2-propanediol oxidoreductase activity in Escherichia coli
    • Cabiscol E., et al. Oxygen regulation of L-1,2-propanediol oxidoreductase activity in Escherichia coli. J. Bacteriol. 1990, 172:5514-5515.
    • (1990) J. Bacteriol. , vol.172 , pp. 5514-5515
    • Cabiscol, E.1
  • 8
    • 84889572248 scopus 로고    scopus 로고
    • Enhanced bioproduction of poly-3-hydroxybutyrate from wheat straw lignocellulosic hydrolysates
    • Cesário M.T., et al. Enhanced bioproduction of poly-3-hydroxybutyrate from wheat straw lignocellulosic hydrolysates. New Biotechnol. 2014, 31:104-113.
    • (2014) New Biotechnol. , vol.31 , pp. 104-113
    • Cesário, M.T.1
  • 9
    • 84947059859 scopus 로고    scopus 로고
    • Metabolic engineering of Corynebacterium glutamicum for the de novo production of ethylene glycol from glucose
    • Advance online publication
    • Chen Z., Huang J., Wu Y., Liu D. Metabolic engineering of Corynebacterium glutamicum for the de novo production of ethylene glycol from glucose. Metab. Eng. 2016, 33:12-18. Advance online publication. 10.1016/j.ymben.2015.10.013.
    • (2016) Metab. Eng. , vol.33 , pp. 12-18
    • Chen, Z.1    Huang, J.2    Wu, Y.3    Liu, D.4
  • 10
    • 0034612342 scopus 로고    scopus 로고
    • One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products
    • Datsenko K.A., Wanner B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 2000, 97:6640-6645.
    • (2000) Proc. Natl. Acad. Sci. USA , vol.97 , pp. 6640-6645
    • Datsenko, K.A.1    Wanner, B.L.2
  • 11
    • 84940040914 scopus 로고    scopus 로고
    • Metabolic engineering of E. coli for efficient production of glycolic acid from glucose
    • Deng Y., Mao Y., Zhang X.J. Metabolic engineering of E. coli for efficient production of glycolic acid from glucose. Biochem. Eng. J. 2015, 103:256-262.
    • (2015) Biochem. Eng. J. , vol.103 , pp. 256-262
    • Deng, Y.1    Mao, Y.2    Zhang, X.J.3
  • 12
    • 77649205142 scopus 로고    scopus 로고
    • Regulation of arabinose and xylose metabolism in Escherichia coli
    • Desai T.A., Rao C.V. Regulation of arabinose and xylose metabolism in Escherichia coli. Appl. Env. Microbiol. 2010, 76:1524-1532.
    • (2010) Appl. Env. Microbiol. , vol.76 , pp. 1524-1532
    • Desai, T.A.1    Rao, C.V.2
  • 13
    • 67349270900 scopus 로고    scopus 로고
    • Enzymatic assembly of DNA molecules up to several hundred kilobases
    • Gibson D.G., et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 2009, 6:343-345.
    • (2009) Nat. Methods , vol.6 , pp. 343-345
    • Gibson, D.G.1
  • 15
    • 0022457831 scopus 로고
    • Diol metabolism and diol dehydratase in Clostridium glycolicum
    • Hartmanis M.G.N., Stadtman T.C. Diol metabolism and diol dehydratase in Clostridium glycolicum. Arch. Biochem. Biophys. 1986, 245:144-152.
    • (1986) Arch. Biochem. Biophys. , vol.245 , pp. 144-152
    • Hartmanis, M.G.N.1    Stadtman, T.C.2
  • 16
    • 0030749853 scopus 로고    scopus 로고
    • Cloning and characterization of the D-tagatose 3-epimerase gene from Pseudomonas cichorii ST-24
    • Ishida Y., Kamiya T., Itoh H., Kimura Y., Izumori K. Cloning and characterization of the D-tagatose 3-epimerase gene from Pseudomonas cichorii ST-24. J. Ferment. Bioeng. 1997, 83:529-534.
    • (1997) J. Ferment. Bioeng. , vol.83 , pp. 529-534
    • Ishida, Y.1    Kamiya, T.2    Itoh, H.3    Kimura, Y.4    Izumori, K.5
  • 17
    • 0028253982 scopus 로고
    • Purification and characterization of D-tagatose 3-epimerase from Pseudomonas sp. ST-24
    • Itoh H., et al. Purification and characterization of D-tagatose 3-epimerase from Pseudomonas sp. ST-24. Biosci. Biotechnol. Biochem. 1994, 58:2168-2171.
    • (1994) Biosci. Biotechnol. Biochem. , vol.58 , pp. 2168-2171
    • Itoh, H.1
  • 18
  • 19
    • 68549099770 scopus 로고    scopus 로고
    • Catalytic conversion of cellulose into ethylene glycol over supported carbide catalysts
    • Ji N., et al. Catalytic conversion of cellulose into ethylene glycol over supported carbide catalysts. Catal. Today 2009, 147:77-85.
    • (2009) Catal. Today , vol.147 , pp. 77-85
    • Ji, N.1
  • 21
    • 84882640990 scopus 로고    scopus 로고
    • Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism
    • Kim S.R., Park Y.C., Jin Y.S., Seo J.H. Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. Biotechnol. Adv. 2013, 31:851-861.
    • (2013) Biotechnol. Adv. , vol.31 , pp. 851-861
    • Kim, S.R.1    Park, Y.C.2    Jin, Y.S.3    Seo, J.H.4
  • 22
    • 84884410620 scopus 로고    scopus 로고
    • Glycolic acid production in the engineered yeasts Saccharomyces cerevisiae and Kluyveromyces lactis
    • Koivistoinen O.M., et al. Glycolic acid production in the engineered yeasts Saccharomyces cerevisiae and Kluyveromyces lactis. Microb. Cell Fact. 2013, 12:82.
    • (2013) Microb. Cell Fact. , vol.12 , pp. 82
    • Koivistoinen, O.M.1
  • 23
    • 0028793123 scopus 로고
    • Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes
    • Kovach M.E., et al. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 1995, 166:175-176.
    • (1995) Gene , vol.166 , pp. 175-176
    • Kovach, M.E.1
  • 24
    • 84883791840 scopus 로고    scopus 로고
    • Engineering xylose metabolism in triacylglycerol-producing Rhodococcus opacus for lignocellulosic fuel production
    • Kurosawa K., Wewetzer S.J., Sinskey A.J. Engineering xylose metabolism in triacylglycerol-producing Rhodococcus opacus for lignocellulosic fuel production. Biotechnol. Biofuels 2013, 6:134.
    • (2013) Biotechnol. Biofuels , vol.6 , pp. 134
    • Kurosawa, K.1    Wewetzer, S.J.2    Sinskey, A.J.3
  • 25
    • 0015040240 scopus 로고
    • Metabolism of D-arabinose: a new pathway in Escherichia coli
    • LeBlanc D.J., Mortlock R.P. Metabolism of D-arabinose: a new pathway in Escherichia coli. J. Bacteriol. 1971, 106:90-96.
    • (1971) J. Bacteriol. , vol.106 , pp. 90-96
    • LeBlanc, D.J.1    Mortlock, R.P.2
  • 26
    • 84861440312 scopus 로고    scopus 로고
    • Systems metabolic engineering of microorganisms for natural and non-natural chemicals
    • Lee J.W., et al. Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat. Chem. Biol. 2012, 8:536-546.
    • (2012) Nat. Chem. Biol. , vol.8 , pp. 536-546
    • Lee, J.W.1
  • 27
    • 84876694741 scopus 로고    scopus 로고
    • Biosynthesis of ethylene glycol in Escherichia coli
    • Liu H., et al. Biosynthesis of ethylene glycol in Escherichia coli. Appl. Microbiol. Biotechnol. 2013, 97:3409-3417.
    • (2013) Appl. Microbiol. Biotechnol. , vol.97 , pp. 3409-3417
    • Liu, H.1
  • 28
    • 84879184862 scopus 로고    scopus 로고
    • A platform pathway for production of 3-hydroxyacids provides a biosynthetic route to 3-hydroxy-γ-butyrolactone
    • Martin C.H., et al. A platform pathway for production of 3-hydroxyacids provides a biosynthetic route to 3-hydroxy-γ-butyrolactone. Nat. Commun. 2013, 4:1933.
    • (2013) Nat. Commun. , vol.4 , pp. 1933
    • Martin, C.H.1
  • 29
    • 85006817709 scopus 로고    scopus 로고
    • Engineering sugar utilization and microbial tolerance toward lignocellulose conversion
    • Nieves L.M., Panyon L.A., Wang X. Engineering sugar utilization and microbial tolerance toward lignocellulose conversion. Front. Bioeng. Biotechnol. 2015, 3:17.
    • (2015) Front. Bioeng. Biotechnol. , vol.3 , pp. 17
    • Nieves, L.M.1    Panyon, L.A.2    Wang, X.3
  • 31
    • 79960014203 scopus 로고    scopus 로고
    • Catalytic hydrogenation of corn stalk to ethylene glycol and 1,2-propylene glycol
    • Pang J., Zheng M., Wang A., Zhang T. Catalytic hydrogenation of corn stalk to ethylene glycol and 1,2-propylene glycol. Ind. Eng. Chem. Res. 2011, 50:6601-6608.
    • (2011) Ind. Eng. Chem. Res. , vol.50 , pp. 6601-6608
    • Pang, J.1    Zheng, M.2    Wang, A.3    Zhang, T.4
  • 32
    • 0029670395 scopus 로고    scopus 로고
    • Glc locus of Escherichia coli: characterization of genes encoding the subunits of glycolate oxidase and the glc regulator protein
    • Pellicer M.T., Badía J., Aguilar J., Baldomà L. glc locus of Escherichia coli: characterization of genes encoding the subunits of glycolate oxidase and the glc regulator protein. J. Bacteriol. 1996, 178:2051-2059.
    • (1996) J. Bacteriol. , vol.178 , pp. 2051-2059
    • Pellicer, M.T.1    Badía, J.2    Aguilar, J.3    Baldomà, L.4
  • 33
    • 84965129137 scopus 로고    scopus 로고
    • Engineering a novel biosynthetic pathway in Escherichia coli for production of renewable ethylene glycol
    • Advance online publication
    • Pereira B., et al. Engineering a novel biosynthetic pathway in Escherichia coli for production of renewable ethylene glycol. Biotechnol. Bioeng. 2015, Advance online publication. 10.1002/bit.25717.
    • (2015) Biotechnol. Bioeng.
    • Pereira, B.1
  • 34
    • 78651318880 scopus 로고    scopus 로고
    • Selective hydrogenolysis of biomass-derived xylitol to ethylene glycol and propylene glycol on supported Ru catalysts
    • Sun J., Liu H. Selective hydrogenolysis of biomass-derived xylitol to ethylene glycol and propylene glycol on supported Ru catalysts. Green Chem. 2011, 13:135-142.
    • (2011) Green Chem. , vol.13 , pp. 135-142
    • Sun, J.1    Liu, H.2
  • 35
    • 84922782676 scopus 로고    scopus 로고
    • 13C-metabolic flux analysis of a xylose-consuming Saccharomyces cerevisiae strain expressing xylose isomerase
    • 13C-metabolic flux analysis of a xylose-consuming Saccharomyces cerevisiae strain expressing xylose isomerase. Biotechnol. Bioeng. 2015, 112:470-483.
    • (2015) Biotechnol. Bioeng. , vol.112 , pp. 470-483
    • Wasylenko, T.M.1    Stephanopoulos, G.2
  • 36
    • 84877804801 scopus 로고    scopus 로고
    • Modular optimization of multi-gene pathways for fatty acids production in E. coli
    • Xu P., et al. Modular optimization of multi-gene pathways for fatty acids production in E. coli. Nat. Commun. 2013, 4:1409.
    • (2013) Nat. Commun. , vol.4 , pp. 1409
    • Xu, P.1
  • 37
    • 79959374585 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol
    • Yim H., et al. Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat. Chem. Biol.. 2011, 7:445-452.
    • (2011) Nat. Chem. Biol.. , vol.7 , pp. 445-452
    • Yim, H.1
  • 38
    • 84938831453 scopus 로고    scopus 로고
    • Metabolic engineering of Corynebacterium glutamicum for glycolate production
    • Zahoor A., Otten A., Wendisch V.F. Metabolic engineering of Corynebacterium glutamicum for glycolate production. J. Biotechnol. 2014, 192:366-375.
    • (2014) J. Biotechnol. , vol.192 , pp. 366-375
    • Zahoor, A.1    Otten, A.2    Wendisch, V.F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.