메뉴 건너뛰기




Volumn 32, Issue 1, 2016, Pages 155-171

A combination of the ICA-ANN model to predict air-overpressure resulting from blasting

Author keywords

Air overpressure; Artificial neural network; Blasting; Imperialist competitive algorithm

Indexed keywords

ALGORITHMS; ENVIRONMENTAL IMPACT; FORECASTING; MEAN SQUARE ERROR; NEURAL NETWORKS; OPTIMAL SYSTEMS; OPTIMIZATION;

EID: 84952985963     PISSN: 01770667     EISSN: 14355663     Source Type: Journal    
DOI: 10.1007/s00366-015-0408-z     Document Type: Article
Times cited : (127)

References (83)
  • 1
    • 84952985636 scopus 로고    scopus 로고
    • Genetic programing and non-linear multiple regression techniques to predict backbreak in blasting operation
    • Shirani Faradonbeh R, Monjezi M, Jahed Armaghani D (2015) Genetic programing and non-linear multiple regression techniques to predict backbreak in blasting operation. Eng Comput. doi:10.1007/s00366-015-0404-3
    • (2015) Eng Comput
    • Shirani Faradonbeh, R.1    Monjezi, M.2    Jahed Armaghani, D.3
  • 2
    • 84922684844 scopus 로고    scopus 로고
    • Prediction of blast-induced air overpressure using support vector machine
    • Khandelwal M, Kankar PK (2011) Prediction of blast-induced air overpressure using support vector machine. Arabian J Geosci 4:427–433
    • (2011) Arabian J Geosci , vol.4 , pp. 427-433
    • Khandelwal, M.1    Kankar, P.K.2
  • 3
    • 79960033327 scopus 로고    scopus 로고
    • Application of soft computing to predict blast-induced ground vibration
    • Khandelwal M, Kumar DL, Yellishetty M (2011) Application of soft computing to predict blast-induced ground vibration. Eng Comput 27(2):117–125
    • (2011) Eng Comput , vol.27 , Issue.2 , pp. 117-125
    • Khandelwal, M.1    Kumar, D.L.2    Yellishetty, M.3
  • 4
    • 84911806637 scopus 로고    scopus 로고
    • Blasting-induced flyrock and ground vibration prediction through an expert artificial neural network based on particle swarm optimization
    • Jahed Armaghani D, Hajihassani M, Mohamad ET, Marto A, Noorani SA (2014) Blasting-induced flyrock and ground vibration prediction through an expert artificial neural network based on particle swarm optimization. Arab J Geosci 7:5383–5396
    • (2014) Arab J Geosci , vol.7 , pp. 5383-5396
    • Jahed Armaghani, D.1    Hajihassani, M.2    Mohamad, E.T.3    Marto, A.4    Noorani, S.A.5
  • 6
    • 40849105028 scopus 로고    scopus 로고
    • The importance of site-specific characters in prediction models for blast-induced ground vibrations
    • Kuzu C (2008) The importance of site-specific characters in prediction models for blast-induced ground vibrations. Soil Dynamic Earthq Eng 28:405–414
    • (2008) Soil Dynamic Earthq Eng , vol.28 , pp. 405-414
    • Kuzu, C.1
  • 7
    • 67649188845 scopus 로고    scopus 로고
    • Study into blast vibration and frequency using ANFIS and MVRA
    • Singh TN, Dontha LK, Bhardwaj V (2008) Study into blast vibration and frequency using ANFIS and MVRA. Mining Technology 117(3):116–121
    • (2008) Mining Technology , vol.117 , Issue.3 , pp. 116-121
    • Singh, T.N.1    Dontha, L.K.2    Bhardwaj, V.3
  • 9
    • 84952978896 scopus 로고    scopus 로고
    • Blasters’ handbook, International Society of Explosives Engineers
    • Hopler RB, (1998) editor. Blasters’ handbook. International Society of Explosives Engineers
    • (1998) Editor
    • Hopler, R.B.1
  • 10
    • 35548945819 scopus 로고    scopus 로고
    • Blast induced air overpressure and its prediction using artificial neural network
    • Sawmliana C, Roy PP, Singh RK, Singh TN (2007) Blast induced air overpressure and its prediction using artificial neural network. Mining Technology 116(2):41–48
    • (2007) Mining Technology , vol.116 , Issue.2 , pp. 41-48
    • Sawmliana, C.1    Roy, P.P.2    Singh, R.K.3    Singh, T.N.4
  • 11
    • 84945470529 scopus 로고
    • Structure response and damage produced by airblast from surface mining, United States Bureau of Mines
    • Siskind DE, Stachura VJ, Stagg MS, Koop JW, 1980. In: Siskind DE, editor. Structure response and damage produced by airblast from surface mining. United States Bureau of Mines
    • (1980) In: Siskind DE, editor
    • Siskind, D.E.1    Stachura, V.J.2    Stagg, M.S.3    Koop, J.W.4
  • 12
    • 84942858852 scopus 로고    scopus 로고
    • Blasting principles for open pit mining: general design concepts
    • Hustrulid WA, 1999. Blasting principles for open pit mining: general design concepts. Balkema.
    • (1999) Balkema
    • Hustrulid, W.A.1
  • 13
    • 56649121991 scopus 로고    scopus 로고
    • Operational and geological parameters in the assessing blast induced airblast-overpressure in quarries
    • Kuzu C, Fisne A, Ercelebi SG (2009) Operational and geological parameters in the assessing blast induced airblast-overpressure in quarries. Appl Acoust 70:404–411
    • (2009) Appl Acoust , vol.70 , pp. 404-411
    • Kuzu, C.1    Fisne, A.2    Ercelebi, S.G.3
  • 14
    • 84893973238 scopus 로고    scopus 로고
    • Prediction of airblast-overpressure induced by blasting using a hybrid artificial neural network and particle swarm optimization
    • Hajihassani M, Jahed Armaghani D, Sohaei H, Mohamad ET, Marto A (2014) Prediction of airblast-overpressure induced by blasting using a hybrid artificial neural network and particle swarm optimization. Appl Acoust 80:57–67
    • (2014) Appl Acoust , vol.80 , pp. 57-67
    • Hajihassani, M.1    Jahed Armaghani, D.2    Sohaei, H.3    Mohamad, E.T.4    Marto, A.5
  • 16
    • 84944513380 scopus 로고    scopus 로고
    • An adaptive neuro-fuzzy inference system for predicting unconfined compressive strength and Young’s modulus: a study on Main Range granite
    • Jahed Armaghani D, Tonnizam Mohamad E, Momeni E, Narayanasamy MS, Mohd Amin MF (2014) An adaptive neuro-fuzzy inference system for predicting unconfined compressive strength and Young’s modulus: a study on Main Range granite. Bull Eng Geol Environ. doi:10.1007/s10064-014-0687-4
    • (2014) Bull Eng Geol Environ
    • Jahed Armaghani, D.1    Tonnizam Mohamad, E.2    Momeni, E.3    Narayanasamy, M.S.4    Mohd Amin, M.F.5
  • 17
    • 84878562497 scopus 로고    scopus 로고
    • Evaluation and prediction of blast-induced ground vibration at Shur River Dam, Iran, by artificial neural network
    • Monjezi M, Hasanipanah M, Khandelwal M (2013) Evaluation and prediction of blast-induced ground vibration at Shur River Dam, Iran, by artificial neural network. Neural Comput Appl 22:1637–1643
    • (2013) Neural Comput Appl , vol.22 , pp. 1637-1643
    • Monjezi, M.1    Hasanipanah, M.2    Khandelwal, M.3
  • 18
    • 84906825852 scopus 로고    scopus 로고
    • Prediction of pile bearing capacity using a hybrid genetic algorithm-based ANN
    • Momeni E, Nazir R, Jahed Armaghani D, Maizir H (2014) Prediction of pile bearing capacity using a hybrid genetic algorithm-based ANN. Measurement 57:122–131
    • (2014) Measurement , vol.57 , pp. 122-131
    • Momeni, E.1    Nazir, R.2    Jahed Armaghani, D.3    Maizir, H.4
  • 20
    • 0742271704 scopus 로고    scopus 로고
    • An improved backpropagation algorithm to avoid the local minima problem
    • Wang XG, Tang Z, Tamura H, Ishii M, Sun WD (2004) An improved backpropagation algorithm to avoid the local minima problem. Neurocomputing 56:455–460
    • (2004) Neurocomputing , vol.56 , pp. 455-460
    • Wang, X.G.1    Tang, Z.2    Tamura, H.3    Ishii, M.4    Sun, W.D.5
  • 22
    • 84878736136 scopus 로고    scopus 로고
    • A hybridized artificial neural network and imperialist competitive algorithm optimization approach for prediction of soil compaction in soil bin facility
    • Taghavifar H, Mardani A, Taghavifar L (2013) A hybridized artificial neural network and imperialist competitive algorithm optimization approach for prediction of soil compaction in soil bin facility. Measurement 46(8):2288–2299
    • (2013) Measurement , vol.46 , Issue.8 , pp. 2288-2299
    • Taghavifar, H.1    Mardani, A.2    Taghavifar, L.3
  • 23
    • 84879070321 scopus 로고    scopus 로고
    • Evolving artificial neural network and imperialist competitive algorithm for prediction oil flow rate of the reservoir
    • Ahmadi MA, Ebadi M, Shokrollahi A, Majidi SMJ (2013) Evolving artificial neural network and imperialist competitive algorithm for prediction oil flow rate of the reservoir. Applied Soft Computing 13(2):1085–1098
    • (2013) Applied Soft Computing , vol.13 , Issue.2 , pp. 1085-1098
    • Ahmadi, M.A.1    Ebadi, M.2    Shokrollahi, A.3    Majidi, S.M.J.4
  • 24
    • 84952975540 scopus 로고
    • Westine PS: Explosion hazards and evaluation. Elsevier Science
    • Baker WE, Cox PA, Kulesz JJ, Strehlow RA, Westine PS, 1983. Explosion hazards and evaluation. Elsevier Science.
    • (1983) Strehlow RA
    • Baker, W.E.1    Cox, P.A.2    Kulesz, J.J.3
  • 29
    • 77952552211 scopus 로고    scopus 로고
    • Prediction of the air wave due to blasting inside tunnels: approximation to a ‘phonometric curve’
    • Rodríguez R, Lombardía C, Torno S (2010) Prediction of the air wave due to blasting inside tunnels: approximation to a ‘phonometric curve’. Tunn Undergr Sp Technol 25:483–489
    • (2010) Tunn Undergr Sp Technol , vol.25 , pp. 483-489
    • Rodríguez, R.1    Lombardía, C.2    Torno, S.3
  • 31
    • 33846881561 scopus 로고    scopus 로고
    • Prediction of the airblast wave effects near a tunnel advanced by drilling and blasting
    • Rodríguez R, Toraño J, Menéndez M (2007) Prediction of the airblast wave effects near a tunnel advanced by drilling and blasting. Tunn Undergr Sp Technol 22:241–251
    • (2007) Tunn Undergr Sp Technol , vol.22 , pp. 241-251
    • Rodríguez, R.1    Toraño, J.2    Menéndez, M.3
  • 32
    • 84893962990 scopus 로고    scopus 로고
    • Construction vibrations
    • Dowding CH. Construction vibrations. In: Dowding, editor; 2000. p. 204–207.
    • In: Dowding, editor , vol.2000 , pp. 204-207
    • Dowding, C.H.1
  • 33
    • 84952983864 scopus 로고
    • Blasting guidance manual, office of surface mining reclamation and enforcement
    • Rosenthal MF, Morlock GL. Blasting guidance manual, office of surface mining reclamation and enforcement. US Department of the Interior; 1987.
    • (1987) US Department of the Interior
    • Rosenthal, M.F.1    Morlock, G.L.2
  • 34
    • 40849105028 scopus 로고    scopus 로고
    • The importance of site-specific characters in prediction models for blast-induced ground vibrations
    • Cengiz K (2008) The importance of site-specific characters in prediction models for blast-induced ground vibrations. Soil Dyn Earthquake Eng 28:405–414
    • (2008) Soil Dyn Earthquake Eng , vol.28 , pp. 405-414
    • Cengiz, K.1
  • 35
    • 10844281031 scopus 로고    scopus 로고
    • Modelling of simultaneous ground shock and air blast pressure on nearby structures from surface explosions
    • Wu C, Hao H (2005) Modelling of simultaneous ground shock and air blast pressure on nearby structures from surface explosions. Int J Impact Eng 31:699–717
    • (2005) Int J Impact Eng , vol.31 , pp. 699-717
    • Wu, C.1    Hao, H.2
  • 37
    • 23144432076 scopus 로고    scopus 로고
    • Prediction of blast induced air overpressure in opencast mine
    • Khandelwal M, Singh TN (2005) Prediction of blast induced air overpressure in opencast mine. Noise Vib Control Worldw 36:7–16
    • (2005) Noise Vib Control Worldw , vol.36 , pp. 7-16
    • Khandelwal, M.1    Singh, T.N.2
  • 38
    • 79959330389 scopus 로고    scopus 로고
    • Performance of fuzzy logic and artificial neural network in prediction of ground and air vibrations
    • Mohamed MT (2011) Performance of fuzzy logic and artificial neural network in prediction of ground and air vibrations. Int J Rock Mech Min Sci 48:845–851
    • (2011) Int J Rock Mech Min Sci , vol.48 , pp. 845-851
    • Mohamed, M.T.1
  • 41
    • 84937966450 scopus 로고    scopus 로고
    • Blast-induced air and ground vibration prediction: a particle swarm optimization-based artificial neural network approach
    • Hajihassani M, Jahed Armaghani D, Monjezi M, Mohamad ET, Marto A (2015) Blast-induced air and ground vibration prediction: a particle swarm optimization-based artificial neural network approach. Environ Earth Sci. doi:10.1007/s12665-015-4274-1
    • (2015) Environ Earth Sci
    • Hajihassani, M.1    Jahed Armaghani, D.2    Monjezi, M.3    Mohamad, E.T.4    Marto, A.5
  • 45
    • 79960051685 scopus 로고    scopus 로고
    • Prediction of rock fragmentation due to blasting using artificial neural network
    • Bahrami A, Monjezi M, Goshtasbi K, Ghazvinian A (2011) Prediction of rock fragmentation due to blasting using artificial neural network. Eng Comput 27(2):177–181
    • (2011) Eng Comput , vol.27 , Issue.2 , pp. 177-181
    • Bahrami, A.1    Monjezi, M.2    Goshtasbi, K.3    Ghazvinian, A.4
  • 46
    • 84937974786 scopus 로고    scopus 로고
    • Feasibility of ANFIS model for prediction of ground vibrations resulting from quarry blasting. Environ Earth Sci
    • Jahed Armaghani D, Momeni E, Alavi Nezhad Khalil Abad SV, Khandelwal M (2015) Feasibility of ANFIS model for prediction of ground vibrations resulting from quarry blasting. Environ Earth Sci. DOI 10.1007/s12665-015-4305-y
    • (2015) DOI 10.1007/s12665-015-4305-y
    • Jahed Armaghani, D.1    Momeni, E.2
  • 47
    • 0032997179 scopus 로고    scopus 로고
    • Application of neural networks for the prediction of the unconfined compressive strength (UCS) from Equotip hardness
    • Maulenkamp F, Grima MA (1999) Application of neural networks for the prediction of the unconfined compressive strength (UCS) from Equotip hardness. Int J Rock Mech Min Sci 36:29–39
    • (1999) Int J Rock Mech Min Sci , vol.36 , pp. 29-39
    • Maulenkamp, F.1    Grima, M.A.2
  • 48
    • 84908308703 scopus 로고    scopus 로고
    • Prediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networks
    • Momeni E, Armaghani DJ, Hajihassani M, Amin MFM (2015) Prediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networks. Measurement 60:50–63
    • (2015) Measurement , vol.60 , pp. 50-63
    • Momeni, E.1    Armaghani, D.J.2    Hajihassani, M.3    Amin, M.F.M.4
  • 49
    • 78149290542 scopus 로고    scopus 로고
    • Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In: IEEE Congr Evol Comput
    • Atashpaz-Gargari E, Lucas C 2007. Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In: IEEE Congr Evol Comput, pp 4661–4667
    • (2007) Pp 4661–4667
    • Atashpaz-Gargari, E.1    Lucas, C.2
  • 50
    • 84986131501 scopus 로고    scopus 로고
    • Colonial competitive algorithm, a novel approach for PID controller design in MIMO distillation column process
    • Atashpaz-Gargari E, Hashemzadeh F, Rajabioun R, Lucas C (2008) Colonial competitive algorithm, a novel approach for PID controller design in MIMO distillation column process. Int J Intell Comput Cybern 1:337–355
    • (2008) Int J Intell Comput Cybern , vol.1 , pp. 337-355
    • Atashpaz-Gargari, E.1    Hashemzadeh, F.2    Rajabioun, R.3    Lucas, C.4
  • 51
    • 77956392814 scopus 로고    scopus 로고
    • Optimum design of skeletal structures using imperialist competitive algorithm
    • Kaveh A, Talatahari S (2010) Optimum design of skeletal structures using imperialist competitive algorithm. Computers and Structures 88(21–22):1220–1229
    • (2010) Computers and Structures , vol.88 , Issue.21-22 , pp. 1220-1229
    • Kaveh, A.1    Talatahari, S.2
  • 53
    • 84872739025 scopus 로고    scopus 로고
    • Application of imperialist competitive algorithm for automated classification of remote sensing images
    • Karami S, Shokouhi SB (2012) Application of imperialist competitive algorithm for automated classification of remote sensing images. International Journal of Computer Theory and Engineering 4(2):137–143
    • (2012) International Journal of Computer Theory and Engineering , vol.4 , Issue.2 , pp. 137-143
    • Karami, S.1    Shokouhi, S.B.2
  • 54
    • 84863733018 scopus 로고    scopus 로고
    • Prediction of asphaltene precipitation using artificial neural network optimized by imperialist competitive algorithm
    • Ahmadi MA (2011) Prediction of asphaltene precipitation using artificial neural network optimized by imperialist competitive algorithm. Journal of Petroleum Exploration and Production Technology 1(2–4):99–106
    • (2011) Journal of Petroleum Exploration and Production Technology , vol.1 , Issue.2-4 , pp. 99-106
    • Ahmadi, M.A.1
  • 56
    • 84952976086 scopus 로고    scopus 로고
    • Australian Tailing Consultants, ATC
    • Report Design (2008) Shur River Dam. Australian Tailing Consultants, ATC
    • (2008) Shur River Dam
    • Report, D.1
  • 57
    • 38349077120 scopus 로고    scopus 로고
    • Prediction of uniaxial compressive strength of sandstones using petrography-based models
    • Zorlu K, Gokceoglu C, Ocakoglu F, Nefeslioglu HA, Acikalin S (2008) Prediction of uniaxial compressive strength of sandstones using petrography-based models. Eng. Geol. 96(3):141–158
    • (2008) Eng. Geol , vol.96 , Issue.3 , pp. 141-158
    • Zorlu, K.1    Gokceoglu, C.2    Ocakoglu, F.3    Nefeslioglu, H.A.4    Acikalin, S.5
  • 59
    • 0030121244 scopus 로고    scopus 로고
    • Advances in feed-forward neural networks: demystifying knowledge acquiring black boxes
    • Looney CG (1996) Advances in feed-forward neural networks: demystifying knowledge acquiring black boxes. IEEE Transactions on Knowledge and Data Engineering 8(2):211–226
    • (1996) IEEE Transactions on Knowledge and Data Engineering , vol.8 , Issue.2 , pp. 211-226
    • Looney, C.G.1
  • 65
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal Approximators
    • Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal Approximators. Neural Networks 2:359–366
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 66
    • 30344474020 scopus 로고    scopus 로고
    • Estimation of rock modulus: for intact rocks with an artificial neural network and for rock masses with a new empirical equation
    • Sonmez H, Gokceoglu C, Nefeslioglu HA, Kayabasi A (2006) Estimation of rock modulus: for intact rocks with an artificial neural network and for rock masses with a new empirical equation. Int. J. Rock Mech. Min. Sci. 43:224–235
    • (2006) Int. J. Rock Mech. Min. Sci , vol.43 , pp. 224-235
    • Sonmez, H.1    Gokceoglu, C.2    Nefeslioglu, H.A.3    Kayabasi, A.4
  • 68
    • 0242683097 scopus 로고
    • Neural network classification of multispectral imagery
    • The University of Arizona, USA
    • Paola, J.D., 1994. Neural network classification of multispectral imagery. MSc thesis, The University of Arizona, USA.
    • (1994) MSc thesis
    • Paola, J.D.1
  • 69
    • 0347406814 scopus 로고
    • A theory of generalization in learning machines with neural application
    • The University of Pennsylvania, USA
    • Wang, C., 1994. A theory of generalization in learning machines with neural application. PhD thesis, The University of Pennsylvania, USA.
    • (1994) PhD thesis
    • Wang, C.1
  • 71
    • 0030130753 scopus 로고    scopus 로고
    • Designing a neural network for forecasting financial and economic time series
    • Kaastra I, Boyd M (1996) Designing a neural network for forecasting financial and economic time series. Neurocomputing 10:215–236
    • (1996) Neurocomputing , vol.10 , pp. 215-236
    • Kaastra, I.1    Boyd, M.2
  • 72
    • 0028543366 scopus 로고
    • Training feed forward networks with the Marquardt algorithm
    • Hagan MT, Menhaj MB (1994) Training feed forward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks 5(6):861–867
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.6 , pp. 861-867
    • Hagan, M.T.1    Menhaj, M.B.2
  • 73
    • 0000743347 scopus 로고
    • Training feedforward neural networks using genetic algorithms
    • Montana DJ, Davis L (1989) Training feedforward neural networks using genetic algorithms. IJCAI 89:762–767
    • (1989) IJCAI , vol.89 , pp. 762-767
    • Montana, D.J.1    Davis, L.2
  • 75
    • 35148827874 scopus 로고    scopus 로고
    • An idea based on honey bee swarm for numerical optimization (Vol. 200). Technical report-tr06, Erciyes university, engineering faculty
    • Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization (Vol. 200). Technical report-tr06, Erciyes university, engineering faculty, computer engineering department.
    • (2005) Computer engineering department
    • Karaboga, D.1
  • 76
    • 34547535038 scopus 로고    scopus 로고
    • An ant colony optimization algorithm for continuous optimization: application to feed-forward neural network training
    • Socha K, Blum C (2007) An ant colony optimization algorithm for continuous optimization: application to feed-forward neural network training. Neural Comput Appl 16:235–247
    • (2007) Neural Comput Appl , vol.16 , pp. 235-247
    • Socha, K.1    Blum, C.2
  • 77
    • 37249054534 scopus 로고    scopus 로고
    • Karaboga, D., Akay, B., Ozturk, C. (2007). Artificial bee colony (ABC) optimization algorithm for training feed-forward neural networks. In Modeling decisions for artificial intelligence (pp. 318-329). Springer Berlin Heidelberg
    • Karaboga, D., Akay, B., Ozturk, C. (2007). Artificial bee colony (ABC) optimization algorithm for training feed-forward neural networks. In Modeling decisions for artificial intelligence (pp. 318-329). Springer Berlin Heidelberg.
  • 78
    • 33845621875 scopus 로고    scopus 로고
    • A hybrid approach for feature subset selection using neural networks and ant colony optimization
    • Sivagaminathan RK, Ramakrishnan S (2007) A hybrid approach for feature subset selection using neural networks and ant colony optimization. Expert systems with applications 33(1):49–60
    • (2007) Expert systems with applications , vol.33 , Issue.1 , pp. 49-60
    • Sivagaminathan, R.K.1    Ramakrishnan, S.2
  • 79
    • 85027955140 scopus 로고    scopus 로고
    • Prediction of flyrock and backbreak in open pit blasting operation: a neuro-genetic approach
    • Monjezi M, Khoshalan HA, Varjani AY (2012) Prediction of flyrock and backbreak in open pit blasting operation: a neuro-genetic approach. Arabian Journal of Geosciences 5(3):441–448
    • (2012) Arabian Journal of Geosciences , vol.5 , Issue.3 , pp. 441-448
    • Monjezi, M.1    Khoshalan, H.A.2    Varjani, A.Y.3
  • 80
    • 84938960941 scopus 로고    scopus 로고
    • Prediction of the unconfined compressive strength of soft rocks: a PSO-based ANN approach. Bull
    • AlaviNezhadKhalilAbadS.V., Geol, Environ
    • Tonnizam Mohamad, E., Jahed Armaghani, D., Momeni, E., Alavi Nezhad Khalil Abad, S.V., 2014. Prediction of the unconfined compressive strength of soft rocks: a PSO-based ANN approach. Bull. Eng. Geol. Environ. doi:10.1007/s10064-014-0638-0
    • (2014) Eng
    • Tonnizam Mohamad, E.1    Jahed Armaghani, D.2    Momeni, E.3
  • 82
    • 84901944790 scopus 로고    scopus 로고
    • Toward an automatic wheat purity measuring device: A machine vision-based neural networks-assisted imperialist competitive algorithm approach
    • Ebrahimi E, Mollazade K, Babaei S (2014) Toward an automatic wheat purity measuring device: A machine vision-based neural networks-assisted imperialist competitive algorithm approach. Measurement 55:196–205
    • (2014) Measurement , vol.55 , pp. 196-205
    • Ebrahimi, E.1    Mollazade, K.2    Babaei, S.3
  • 83
    • 65749099794 scopus 로고    scopus 로고
    • Application of two non-linear prediction tools to the estimation of tunnel boring machine performance
    • Yagiz S, Gokceoglu C, Sezer E, Iplikci S (2009) Application of two non-linear prediction tools to the estimation of tunnel boring machine performance. Eng. Appl. Artif. Intel. 22(4):808–814
    • (2009) Eng. Appl. Artif. Intel , vol.22 , Issue.4 , pp. 808-814
    • Yagiz, S.1    Gokceoglu, C.2    Sezer, E.3    Iplikci, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.