메뉴 건너뛰기




Volumn , Issue , 2011, Pages 231-244

Effectiveness of PSO based neural network for seasonal time series forecasting

Author keywords

ANN; Evolutionary computation; Particle Swarm Optimization; Seasonal ANN; Time series forecasting

Indexed keywords

ANN; DATA SETS; FORECAST ERRORS; NONSTATIONARY DATA; PARTICLE SWARM OPTIMIZATION TECHNIQUE; PERFORMANCE MEASURE; SEASONAL ANN; SEASONAL PATTERNS; SEASONAL TIME SERIES; STATIONARY TIME SERIES; TIME SERIES FORECASTING; TRAINED NEURAL NETWORKS;

EID: 84872173837     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (32)

References (41)
  • 3
    • 0000013567 scopus 로고
    • Autoregressive conditional heteroskedasticity, with estimates of the variance of UK inflation
    • Engle, R.: Autoregressive conditional heteroskedasticity, with estimates of the variance of UK inflation. J. Econometrica 50 (1982)
    • (1982) J. Econometrica , vol.50
    • Engle, R.1
  • 6
    • 34548619946 scopus 로고    scopus 로고
    • A neural network ensemble method with jittered training data for time series forecasting
    • Zhang, G.P.: A neural network ensemble method with jittered training data for time series forecasting. Information Sciences 177, 5329-5346 (2007)
    • (2007) Information Sciences , vol.177 , pp. 5329-5346
    • Zhang, G.P.1
  • 7
    • 0037243071 scopus 로고    scopus 로고
    • Time series forecasting using a hybrid ARIMA and neural network model
    • Zhang, G.P.: Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50, 159-175 (2003)
    • (2003) Neurocomputing , vol.50 , pp. 159-175
    • Zhang, G.P.1
  • 8
    • 0003123930 scopus 로고    scopus 로고
    • Forecasting with artificial neural networks: The state of the art
    • Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks: The state of the art. J. Forecasting 14, 35-62(1998)
    • (1998) J. Forecasting , vol.14 , pp. 35-62
    • Zhang, G.1    Patuwo, B.E.2    Hu, M.Y.3
  • 9
    • 0000032342 scopus 로고    scopus 로고
    • How effective are neural networks at forecasting and prediction? A review and evaluation
    • Adya, M., Collopy, F.: How effective are neural networks at forecasting and prediction? A review and evaluation. J. Forecasting 17, 481-495 (1998)
    • (1998) J. Forecasting , vol.17 , pp. 481-495
    • Adya, M.1    Collopy, F.2
  • 11
    • 0028543366 scopus 로고
    • Training feedforward networks with the marquardt algorithm
    • Hagan, M., Menhaj, M.: Training feedforward networks with the marquardt algorithm. IEEE Transactions on Neural Networks 5(6), 989-993 (1994)
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.1    Menhaj, M.2
  • 13
    • 0027205884 scopus 로고
    • A scaled conjugate gradient algorithm for fast supervised learning
    • Moller, M.F.: A scaled conjugate gradient algorithm for fast supervised learning. J. Neural Networks. 6, 525-533(1993)
    • (1993) J. Neural Networks , vol.6 , pp. 525-533
    • Moller, M.F.1
  • 14
    • 0001024110 scopus 로고
    • One step secant conjugate gradient
    • Battiti, R.: One step secant conjugate gradient. Neural Computation 4, 141-166 (1992).
    • (1992) Neural Computation , vol.4 , pp. 141-166
    • Battiti, R.1
  • 18
    • 0037276988 scopus 로고    scopus 로고
    • Tuning of the structure and parameters of the neural network using an improved genetic algorithm
    • Leung, F.H.F., Lam, H.K., Ling, S.H., Tam, P.K.S.: Tuning of the structure and parameters of the neural network using an improved genetic algorithm. IEEE Transactions on Neural Networks. 14(1), 79-88 (2003)
    • (2003) IEEE Transactions on Neural Networks , vol.14 , Issue.1 , pp. 79-88
    • Leung, F.H.F.1    Lam, H.K.2    Ling, S.H.3    Tam, P.K.S.4
  • 22
    • 29444444293 scopus 로고    scopus 로고
    • Time-series prediction using a local linear wavelet neural network
    • Chen, Y., Yanga, B., Dong, J.: Time-series prediction using a local linear wavelet neural network. Neurocomputing 69, 449-465 (2006)
    • (2006) Neurocomputing , vol.69 , pp. 449-465
    • Chen, Y.1    Yanga, B.2    Dong, J.3
  • 23
    • 52949087146 scopus 로고    scopus 로고
    • Improving artificial neural networks performance in seasonal time series forecasting
    • Hamzacebi, C.: Improving artificial neural networks performance in seasonal time series forecasting. Information Sciences 178, 4550-4559 (2008)
    • (2008) Information Sciences , vol.178 , pp. 4550-4559
    • Hamzacebi, C.1
  • 26
    • 0000860595 scopus 로고    scopus 로고
    • Neural networks models for time series forecasts
    • Hill, T., O'Connor, M., Remus, W.: Neural networks models for time series forecasts. J. Management Sciences 42(7), 1082-1092 (1996)
    • (1996) J. Management Sciences , vol.42 , Issue.7 , pp. 1082-1092
    • Hill, T.1    O'Connor, M.2    Remus, W.3
  • 27
    • 4344591889 scopus 로고    scopus 로고
    • Neural network forecasting for seasonal and trend time series
    • Zhang, G., Qi, M.: Neural network forecasting for seasonal and trend time series. European Journal of Operational Research 160, 501-514 (2005)
    • (2005) European Journal of Operational Research , vol.160 , pp. 501-514
    • Zhang, G.1    Qi, M.2
  • 28
    • 0026258339 scopus 로고
    • Time series forecasting using neural networks vs BoxJenkins methodology
    • Tang, Z., Almeida, C., Fishwick, P.A.: Time series forecasting using neural networks vs BoxJenkins methodology. J. Simulation 57(5), 303-310 (1991)
    • (1991) J. Simulation , vol.57 , Issue.5 , pp. 303-310
    • Tang, Z.1    Almeida, C.2    Fishwick, P.A.3
  • 29
    • 0142239491 scopus 로고    scopus 로고
    • Recognizing changing seasonal patterns using artificial neural networks
    • Franses, P.H., Draisma, G.: Recognizing changing seasonal patterns using artificial neural networks. J. Econometrics 81, 273-280 (1997)
    • (1997) J. Econometrics , vol.81 , pp. 273-280
    • Franses, P.H.1    Draisma, G.2
  • 30
    • 0142239490 scopus 로고    scopus 로고
    • Forecasting aggregate retail sales: A comparison of artificial neural networks and traditional methods
    • Alon, I., Qi, M., Sadowski, R.J.: Forecasting aggregate retail sales: a comparison of artificial neural networks and traditional methods. J. Retailing and Consumer Services 8(3), 147-156 (2001)
    • (2001) J. Retailing and Consumer Services , vol.8 , Issue.3 , pp. 147-156
    • Alon, I.1    Qi, M.2    Sadowski, R.J.3
  • 31
    • 0039988139 scopus 로고    scopus 로고
    • Time series forecasting with neural networks: A comparative study using the airline data
    • Faraway, J., Chatfield, C.: Time series forecasting with neural networks: a comparative study using the airline data. J. Applied Statistics 47, 231-250(1998)
    • (1998) J. Applied Statistics , vol.47 , pp. 231-250
    • Faraway, J.1    Chatfield, C.2
  • 33
    • 0000243355 scopus 로고
    • Learning in artificial neural networks: A statistical perspective
    • White, H.: Learning in artificial neural networks: A statistical perspective. Neural Computation 1, 425-464 (1989)
    • (1989) Neural Computation , vol.1 , pp. 425-464
    • White, H.1
  • 34
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • Cybenko, G.: Approximation by superpositions of a sigmoidal function. Mathematics of Control Signals and Systems 2, 303-314 (1989)
    • (1989) Mathematics of Control Signals and Systems , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 37
    • 0037475094 scopus 로고    scopus 로고
    • The particle swarm optimization algorithm: Convergence analysis and parameter selection
    • Trelea, I.: The particle swarm optimization algorithm: convergence analysis and parameter selection. Information Processing Letters 85, 317-325 (2003)
    • (2003) Information Processing Letters , vol.85 , pp. 317-325
    • Trelea, I.1
  • 39
    • 84942083352 scopus 로고    scopus 로고
    • PSOt - A particle swarm optimization toolbox for use with matlab
    • Indianapolis, Indiana, USA
    • Birge, B.: PSOt-A Particle Swarm Optimization Toolbox for use with Matlab. In: Proceedings of the IEEE Swarm Intelligence Symposium, pp. 182-186. Indianapolis, Indiana, USA (2003)
    • (2003) Proceedings of the IEEE Swarm Intelligence Symposium , pp. 182-186
    • Birge, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.