메뉴 건너뛰기




Volumn 58, Issue , 2016, Pages 119-129

Erratum: Corrigendum to “Temporal predication of dropouts in MOOCs: Reaching the low hanging fruit through stacking generalization” (Computers in Human Behavior (2016) 58 (119–129)(S074756321530279X)(10.1016/j.chb.2015.12.007));Temporal predication of dropouts in MOOCs: Reaching the low hanging fruit through stacking generalization

Author keywords

Algorithm; Dropout; Learning analytics; MOOC; Prediction; Stacking

Indexed keywords

ALGORITHMS; CURRICULA; E-LEARNING; FORECASTING; PRINCIPAL COMPONENT ANALYSIS; STUDENTS;

EID: 84952895313     PISSN: 07475632     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.chb.2016.08.051     Document Type: Erratum
Times cited : (222)

References (40)
  • 1
    • 84907218916 scopus 로고    scopus 로고
    • Understanding the MOOCs continuance: The role of openness and reputation
    • K.M. Alraimi, H. Zo, and A.P. Ciganek Understanding the MOOCs continuance: the role of openness and reputation Computers & Education 80 2015 28 38
    • (2015) Computers & Education , vol.80 , pp. 28-38
    • Alraimi, K.M.1    Zo, H.2    Ciganek, A.P.3
  • 2
    • 84898810219 scopus 로고    scopus 로고
    • Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2013-109
    • G. Balakrishnan, and D. Coetzee Predicting student retention in massive open online courses using hidden Markov models May 17, 2013 Electrical Engineering and Computer Sciences University of California at Berkeley http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-109.html Technical Report No. UCB/EECS-2013-109
    • (2013) Predicting Student Retention in Massive Open Online Courses Using Hidden Markov Models
    • Balakrishnan, G.1    Coetzee, D.2
  • 3
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • A.P. Bradley The use of the area under the ROC curve in the evaluation of machine learning algorithms Pattern recognition 30 7 1997 1145 1159
    • (1997) Pattern Recognition , vol.30 , Issue.7 , pp. 1145-1159
    • Bradley, A.P.1
  • 5
    • 84904050304 scopus 로고    scopus 로고
    • Udacity's Sebastian Thrun, godfather of free online education, changes course
    • M. Chafkin Udacity's Sebastian Thrun, godfather of free online education, changes course Fast Company 14 2013
    • (2013) Fast Company , vol.14
    • Chafkin, M.1
  • 7
    • 84949434688 scopus 로고    scopus 로고
    • Learning bayesian belief network classifiers: Algorithms and system
    • Springer Berlin Heidelberg
    • J. Cheng, and R. Greiner Learning bayesian belief network classifiers: algorithms and system Advances in artificial intelligence 2001 Springer Berlin Heidelberg 141 151
    • (2001) Advances in Artificial Intelligence , pp. 141-151
    • Cheng, J.1    Greiner, R.2
  • 8
    • 0031361611 scopus 로고    scopus 로고
    • Machine learning research: Four current directions
    • T.G. Dietterich Machine learning research: four current directions AI Magazine 18 4 1997 97 136
    • (1997) AI Magazine , vol.18 , Issue.4 , pp. 97-136
    • Dietterich, T.G.1
  • 10
    • 84930346306 scopus 로고    scopus 로고
    • Learning analytics at" small" scale: Exploring a complexity-grounded model for assessment automation
    • S. Goggins, W. Xing, X. Chen, B. Chen, and B. Wadholm Learning analytics at" small" scale: exploring a complexity-grounded model for assessment automation Journal of Universal Computer Science 21 1 2015 66 92
    • (2015) Journal of Universal Computer Science , vol.21 , Issue.1 , pp. 66-92
    • Goggins, S.1    Xing, W.2    Chen, X.3    Chen, B.4    Wadholm, B.5
  • 13
    • 69549133517 scopus 로고    scopus 로고
    • Measuring classifier performance: A coherent alternative to the area under the ROC curve
    • D.J. Hand Measuring classifier performance: a coherent alternative to the area under the ROC curve Machine learning 77 1 2009 103 123
    • (2009) Machine Learning , vol.77 , Issue.1 , pp. 103-123
    • Hand, D.J.1
  • 18
    • 84952946661 scopus 로고    scopus 로고
    • Predicting MOOC dropout over weeks using machine learning methods
    • M. Kloft, F. Stiehler, Z. Zheng, and N. Pinkwart Predicting MOOC dropout over weeks using machine learning methods EMNLP 2014 2014 60
    • (2014) EMNLP , vol.2014 , pp. 60
    • Kloft, M.1    Stiehler, F.2    Zheng, Z.3    Pinkwart, N.4
  • 20
    • 84907200816 scopus 로고    scopus 로고
    • Instructional quality of massive open online courses (MOOCs)
    • A. Margaryan, M. Bianco, and A. Littlejohn Instructional quality of massive open online courses (MOOCs) Computers & Education 80 2015 77 83
    • (2015) Computers & Education , vol.80 , pp. 77-83
    • Margaryan, A.1    Bianco, M.2    Littlejohn, A.3
  • 22
    • 84923425565 scopus 로고    scopus 로고
    • Dropout rates of massive open online courses: Behavioural patterns
    • D.F. Onah, J. Sinclair, and R. Boyatt Dropout rates of massive open online courses: behavioural patterns EDULEARN14 Proceedings 2014 5825 5834
    • (2014) EDULEARN14 Proceedings , pp. 5825-5834
    • Onah, D.F.1    Sinclair, J.2    Boyatt, R.3
  • 25
    • 77958153220 scopus 로고    scopus 로고
    • Educational data mining: A review of the state of the art. Systems, Man, and Cybernetics, Part C: Applications and Reviews
    • C. Romero, and S. Ventura Educational data mining: a review of the state of the art. Systems, Man, and Cybernetics, Part C: applications and Reviews IEEE Transactions on 40 6 2010 601 618
    • (2010) IEEE Transactions on , vol.40 , Issue.6 , pp. 601-618
    • Romero, C.1    Ventura, S.2
  • 27
    • 8444229122 scopus 로고    scopus 로고
    • How to make stacking better and faster while also taking care of an unknown weakness
    • Morgan Kaufmann Publishers Inc
    • A.K. Seewald How to make stacking better and faster while also taking care of an unknown weakness Proceedings of the nineteenth international conference on machine learning 2002, July Morgan Kaufmann Publishers Inc 554 561
    • (2002) Proceedings of the Nineteenth International Conference on Machine Learning , pp. 554-561
    • Seewald, A.K.1
  • 31
    • 0026692226 scopus 로고
    • Stacked generalization
    • D.H. Wolpert Stacked generalization Neural networks 5 2 1992 241 259
    • (1992) Neural Networks , vol.5 , Issue.2 , pp. 241-259
    • Wolpert, D.H.1
  • 33
    • 84955576150 scopus 로고    scopus 로고
    • Building models explaining student participation behavior in asynchronous online discussion
    • W. Xing, and S. Goggins Building models explaining student participation behavior in asynchronous online discussion Computers & Education 94 2015 241 251 10.1016/j.compedu.2015.11.002
    • (2015) Computers & Education , vol.94 , pp. 241-251
    • Xing, W.1    Goggins, S.2
  • 34
    • 84924252472 scopus 로고    scopus 로고
    • Participation-based student final performance prediction model through interpretable genetic programming: Integrating learning analytics, educational data mining and theory
    • W. Xing, R. Guo, E. Petakovic, and S. Goggins Participation-based student final performance prediction model through interpretable genetic programming: Integrating learning analytics, educational data mining and theory Computers in Human Behavior 47 2015 168 181
    • (2015) Computers in Human Behavior , vol.47 , pp. 168-181
    • Xing, W.1    Guo, R.2    Petakovic, E.3    Goggins, S.4
  • 35
    • 85062037726 scopus 로고    scopus 로고
    • Modeling performance in asynchronous CSCL: An exploration of social ability, collective efficacy and social interaction
    • O. Lindwall, P. Hakkinen, T. Koschman, P. Tchounikine, S. Ludvigsen, International Society of the Learning Sciences Gothenburg, Sweden
    • W. Xing, S. Kim, and S. Goggins Modeling performance in asynchronous CSCL: an exploration of social ability, collective efficacy and social interaction O. Lindwall, P. Hakkinen, T. Koschman, P. Tchounikine, S. Ludvigsen, Exploring the material conditions of learning: Proceedings of the computer supported collaborative learning (CSCL 2015) 2015 International Society of the Learning Sciences Gothenburg, Sweden 276 283
    • (2015) Exploring the Material Conditions of Learning: Proceedings of the Computer Supported Collaborative Learning (CSCL 2015) , pp. 276-283
    • Xing, W.1    Kim, S.2    Goggins, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.