메뉴 건너뛰기




Volumn 11, Issue 5, 2015, Pages 1231-1242

Multistage Wind-Electric Power Forecast by Using a Combination of Advanced Statistical Methods

Author keywords

Artificial neural network; statistical methods; support vector machines; wind electric power forecast

Indexed keywords

BENCHMARKING; COMPLEX NETWORKS; ELECTRIC POWER GENERATION; ELECTRIC POWER PLANTS; FORECASTING; NEURAL NETWORKS; STATISTICAL METHODS; STATISTICS; SUPPORT VECTOR MACHINES; WEATHER FORECASTING; WIND; WIND EFFECTS; WIND POWER;

EID: 84944035381     PISSN: 15513203     EISSN: None     Source Type: Journal    
DOI: 10.1109/TII.2015.2431642     Document Type: Article
Times cited : (86)

References (62)
  • 1
    • 60049084645 scopus 로고    scopus 로고
    • A review on the forecasting of wind speed and generated power
    • May
    • L. Ma, S. Y. Luan, C. W. Jiang, H. L. Liu, and Y. Zhang, "A review on the forecasting of wind speed and generated power," Renew. Sustain. Energy Rev. , vol. 13, no. 4, pp. 915-920, May 2009.
    • (2009) Renew. Sustain. Energy Rev. , vol.13 , Issue.4 , pp. 915-920
    • Ma, L.1    Luan, S.Y.2    Jiang, C.W.3    Liu, H.L.4    Zhang, Y.5
  • 2
    • 43049128559 scopus 로고    scopus 로고
    • A review on the young history of the wind power shortterm prediction
    • Aug.
    • A. Costa et al. , "A review on the young history of the wind power shortterm prediction," Renew. Sustain. Energy Rev. , vol. 12, no. 6, pp. 1725-1744, Aug. 2008.
    • (2008) Renew. Sustain. Energy Rev. , vol.12 , Issue.6 , pp. 1725-1744
    • Costa, A.1
  • 5
    • 80053082143 scopus 로고    scopus 로고
    • Hybrid intelligent approach for short-term wind power forecasting in Portugal
    • May
    • J. P. S. Catalaõ, H. M. I. Pousinho, and V. M. F. Mendes, "Hybrid intelligent approach for short-term wind power forecasting in Portugal," IET Renew. Power Gener. , vol. 5, no. 3, pp. 251-257, May 2011.
    • (2011) IET Renew. Power Gener. , vol.5 , Issue.3 , pp. 251-257
    • Catalaõ, J.P.S.1    Pousinho, H.M.I.2    Mendes, V.M.F.3
  • 6
    • 84926462551 scopus 로고    scopus 로고
    • A novel wind power forecast model: Statistical hybrid wind power forecast technique (SHWIP)
    • Apr.
    • M. Ozkan and P. Karagoz, "A novel wind power forecast model: Statistical hybrid wind power forecast technique (SHWIP)," IEEE Trans. Ind. Informat. , vol. 11, no. 2, pp. 375-387, Apr. 2015.
    • (2015) IEEE Trans. Ind. Informat. , vol.11 , Issue.2 , pp. 375-387
    • Ozkan, M.1    Karagoz, P.2
  • 8
    • 84907425719 scopus 로고    scopus 로고
    • Wind turbine power curve modeling using advanced parametric and nonparametric methods
    • Oct.
    • S. Shokrzadeh, M. Jafari Jozani, and E. Bibeau, "Wind turbine power curve modeling using advanced parametric and nonparametric methods," IEEE Trans. Sustain. Energy, vol. 5, no. 4, pp. 1262-1269, Oct. 2014.
    • (2014) IEEE Trans. Sustain. Energy , vol.5 , Issue.4 , pp. 1262-1269
    • Shokrzadeh, S.1    Jafari Jozani, M.2    Bibeau, E.3
  • 9
    • 0001737050 scopus 로고
    • The use of model output statistics (MOS) in objective weather forecasting
    • H. R. Glahn and D. A. Lowry, "The use of model output statistics (MOS) in objective weather forecasting," J. Appl. Meteorol. , vol. 11, no. 8, pp. 1202-1211, 1972.
    • (1972) J. Appl. Meteorol. , vol.11 , Issue.8 , pp. 1202-1211
    • Glahn, H.R.1    Lowry, D.A.2
  • 10
    • 84897656346 scopus 로고    scopus 로고
    • Wind power forecasts using Gaussian processes and numerical weather prediction
    • Mar.
    • N. Chen, Z. Qian, IT. Nabney, and X. Meng, "Wind power forecasts using Gaussian processes and numerical weather prediction," IEEE Trans. Power Syst. , vol. 29, no. 2, pp. 656-665, Mar. 2014.
    • (2014) IEEE Trans. Power Syst. , vol.29 , Issue.2 , pp. 656-665
    • Chen, N.1    Qian, Z.2    Nabney, I.T.3    Meng, X.4
  • 11
    • 78149358777 scopus 로고    scopus 로고
    • Comprehensive evaluation of ARMA arch(-m) approaches for modeling the mean and volatility of wind speed
    • H. Liu, E. Erdem, and J. Shi, "Comprehensive evaluation of ARMA arch(-m) approaches for modeling the mean and volatility of wind speed," Appl. Energy, vol. 88, no. 3, pp. 724-732, 2011.
    • (2011) Appl. Energy , vol.88 , Issue.3 , pp. 724-732
    • Liu, H.1    Erdem, E.2    Shi, J.3
  • 12
    • 58949103845 scopus 로고    scopus 로고
    • Day-ahead wind speed forecasting using f-ARIMA models
    • R. G. Kavasseri and K. Seetharaman, "Day-ahead wind speed forecasting using f-ARIMA models," Renew. Energy, vol. 34, no. 5, pp. 1388-1393, 2009.
    • (2009) Renew. Energy , vol.34 , Issue.5 , pp. 1388-1393
    • Kavasseri, R.G.1    Seetharaman, K.2
  • 13
    • 49749138923 scopus 로고    scopus 로고
    • Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering
    • P. Louka et al. , "Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering," J. Wind Eng. Ind. Aerodyn. , vol. 96, no. 12, pp. 2348-2362, 2008.
    • (2008) J. Wind Eng. Ind. Aerodyn. , vol.96 , Issue.12 , pp. 2348-2362
    • Louka, P.1
  • 14
    • 2942570109 scopus 로고    scopus 로고
    • A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation
    • June
    • I. G. Damousis, M. C. Alexiadis, J. B. Theocharis, and P. S. Dokopoulos, "A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation," IEEE Trans. Energy Convers. , vol. 19, no. 2, pp. 352-361, June 2004.
    • (2004) IEEE Trans. Energy Convers. , vol.19 , Issue.2 , pp. 352-361
    • Damousis, I.G.1    Alexiadis, M.C.2    Theocharis, J.B.3    Dokopoulos, P.S.4
  • 15
    • 77953137822 scopus 로고    scopus 로고
    • On comparing three artificial neural networks for wind speed forecasting
    • G. Li and J. Shi, "On comparing three artificial neural networks for wind speed forecasting," Appl. Energy, vol. 87, no. 7, pp. 2313-2320, 2010.
    • (2010) Appl. Energy , vol.87 , Issue.7 , pp. 2313-2320
    • Li, G.1    Shi, J.2
  • 16
    • 78650944534 scopus 로고    scopus 로고
    • Fine tuning support vector machines for shortterm wind speed forecasting
    • J. Zhou, J. Shi, and G. Li, "Fine tuning support vector machines for shortterm wind speed forecasting," Energy Convers. Manage. , vol. 52, no. 4, pp. 1990-1998, 2011.
    • (2011) Energy Convers. Manage. , vol.52 , Issue.4 , pp. 1990-1998
    • Zhou, J.1    Shi, J.2    Li, G.3
  • 17
    • 70350707612 scopus 로고    scopus 로고
    • Entropy and correntropy against minimum square error in offline and online three-day ahead wind power forecasting
    • Nov.
    • R. J. Bessa, V. Miranda, and J. Gama, "Entropy and correntropy against minimum square error in offline and online three-day ahead wind power forecasting," IEEE Trans. Power Syst. , vol. 24, no. 4, pp. 1657-1666, Nov. 2009.
    • (2009) IEEE Trans. Power Syst. , vol.24 , Issue.4 , pp. 1657-1666
    • Bessa, R.J.1    Miranda, V.2    Gama, J.3
  • 18
    • 84910048385 scopus 로고    scopus 로고
    • Wind power forecasting in a residential location as part of the energy box management decision tool
    • Nov.
    • C. S. Ioakimidis, L. J. Oliveira, and K. N. Genikomsakis, "Wind power forecasting in a residential location as part of the energy box management decision tool," IEEE Trans. Ind. Informat. , vol. 10, no. 4, pp. 2103-2111, Nov. 2014.
    • (2014) IEEE Trans. Ind. Informat. , vol.10 , Issue.4 , pp. 2103-2111
    • Ioakimidis, C.S.1    Oliveira, L.J.2    Genikomsakis, K.N.3
  • 19
    • 61649090211 scopus 로고    scopus 로고
    • Short-term prediction of wind farm power: A data-mining approach
    • Mar.
    • A. Kusiak, Z. Haiyang, and S. Zhe, "Short-term prediction of wind farm power: A data-mining approach," IEEE Trans. Energy Convers. , vol. 24, no. 1, pp. 125-136, Mar. 2009.
    • (2009) IEEE Trans. Energy Convers. , vol.24 , Issue.1 , pp. 125-136
    • Kusiak, A.1    Haiyang, Z.2    Zhe, S.3
  • 20
    • 59249094375 scopus 로고    scopus 로고
    • Short term wind speed prediction using support vector machine model
    • Nov.
    • K. Sreelakshmi and P. Ramakanthkumar, "Short term wind speed prediction using support vector machine model," WSEAS Trans. Comput. Sci. , vol. 7, no. 11, pp. 1828-1837, Nov. 2008.
    • (2008) WSEAS Trans. Comput. Sci. , vol.7 , Issue.11 , pp. 1828-1837
    • Sreelakshmi, K.1    Ramakanthkumar, P.2
  • 21
    • 0442296729 scopus 로고    scopus 로고
    • Support vector machines for wind speed prediction
    • May
    • M. Mohandes, T. Halawani, S. Rehman, and A. A. Hussain, "Support vector machines for wind speed prediction," Renew. Energy. , vol. 29, no. 6, pp. 939-947, May 2004.
    • (2004) Renew. Energy. , vol.29 , Issue.6 , pp. 939-947
    • Mohandes, M.1    Halawani, T.2    Rehman, S.3    Hussain, A.A.4
  • 22
    • 84864143531 scopus 로고    scopus 로고
    • Short-term wind-power prediction based on wavelet transform-support vector machine and statistic-characteristics analysis
    • Aug.
    • Y. Liu, J. Shi, Y. Yang, and W.-J. Lee, "Short-term wind-power prediction based on wavelet transform-support vector machine and statistic-characteristics analysis," IEEE Trans. Ind. Appl. , vol. 48, no. 4, pp. 1136-1141, Aug. 2012.
    • (2012) IEEE Trans. Ind. Appl. , vol.48 , Issue.4 , pp. 1136-1141
    • Liu, Y.1    Shi, J.2    Yang, Y.3    Lee, W.-J.4
  • 23
    • 34648852323 scopus 로고    scopus 로고
    • Locally recurrent neural networks for wind speed prediction using spatial correlation
    • T. Barbounis and J. Theocharis, "Locally recurrent neural networks for wind speed prediction using spatial correlation," Inf. Sci. , vol. 177, no. 24, pp. 5775-5797, 2007.
    • (2007) Inf. Sci. , vol.177 , Issue.24 , pp. 5775-5797
    • Barbounis, T.1    Theocharis, J.2
  • 24
    • 33244470907 scopus 로고    scopus 로고
    • Longterm wind speed and power forecasting using local recurrent neural network models
    • Mar.
    • T. Barbounis, J. Theocharis,M. Alexiadis, and P. Dokopoulos, "Longterm wind speed and power forecasting using local recurrent neural network models," IEEE Trans. Energy Convers. , vol. 21, no. 1, pp. 273-284, Mar. 2006.
    • (2006) IEEE Trans. Energy Convers. , vol.21 , Issue.1 , pp. 273-284
    • Barbounis, T.1    Theocharism. Alexiadis, J.2    Dokopoulos, P.3
  • 25
    • 80052530027 scopus 로고    scopus 로고
    • Short-term wind power forecasting using ridgelet neural network
    • Dec.
    • N. Amjady, F. Keynia, and H. Zareipour, "Short-term wind power forecasting using ridgelet neural network," Elect. Power Syst. Res. , vol. 81, no. 12, pp. 2099-2107, Dec. 2011.
    • (2011) Elect. Power Syst. Res. , vol.81 , Issue.12 , pp. 2099-2107
    • Amjady, N.1    Keynia, F.2    Zareipour, H.3
  • 26
    • 78650561071 scopus 로고    scopus 로고
    • Error analysis of short term wind power prediction models
    • Apr.
    • M. G. De Giorgi, A. Ficarella, and M. Tarantino, "Error analysis of short term wind power prediction models," Appl. Energy, vol. 88, no. 4, pp. 1298-1311, Apr. 2011.
    • (2011) Appl. Energy , vol.88 , Issue.4 , pp. 1298-1311
    • De Giorgi, M.G.1    Ficarella, A.2    Tarantino, M.3
  • 27
    • 80054923967 scopus 로고    scopus 로고
    • A statistical model for wind power forecast error and its application to the estimation of penalties in liberalized Markets
    • Nov.
    • S. Tewari, C. J. Geyer, and N. Mohan, "A statistical model for wind power forecast error and its application to the estimation of penalties in liberalized Markets," IEEE Trans. Power Syst. , vol. 26, no. 4, pp. 2031-2039, Nov. 2011.
    • (2011) IEEE Trans. Power Syst. , vol.26 , Issue.4 , pp. 2031-2039
    • Tewari, S.1    Geyer, C.J.2    Mohan, N.3
  • 29
    • 84883230827 scopus 로고    scopus 로고
    • Wind power forecasting focused on extreme power system events
    • Jul.
    • G. Sideratos and N. D. Hatziargyriou, "Wind power forecasting focused on extreme power system events," IEEE Trans. Sustain. Energy, vol. 3, no. 3, pp. 445-454, Jul. 2012.
    • (2012) IEEE Trans. Sustain. Energy , vol.3 , Issue.3 , pp. 445-454
    • Sideratos, G.1    Hatziargyriou, N.D.2
  • 31
    • 33947303690 scopus 로고    scopus 로고
    • An advanced statistical method for wind power forecasting
    • Feb.
    • G. Sideratos and N. D. Hatziargyriou, "An advanced statistical method for wind power forecasting," IEEE Trans. Power Syst. , vol. 22, no. 1, pp. 258-265, Feb. 2007.
    • (2007) IEEE Trans. Power Syst. , vol.22 , Issue.1 , pp. 258-265
    • Sideratos, G.1    Hatziargyriou, N.D.2
  • 32
    • 84860254202 scopus 로고    scopus 로고
    • A method for short-term wind power prediction with multiple observation points
    • May
    • M. Khalid and A. V. Savkin, "A method for short-term wind power prediction with multiple observation points," IEEE Trans. Power Syst. , vol. 27, no. 2, pp. 579-586, May 2012.
    • (2012) IEEE Trans. Power Syst. , vol.27 , Issue.2 , pp. 579-586
    • Khalid, M.1    Savkin, A.V.2
  • 33
    • 67349211771 scopus 로고    scopus 로고
    • Forecasting the wind generation using a two-stage network based on meteorological information
    • Jun.
    • F. Shu, J. R. Liao, R. Yokoyama, C. Luonan, and L. Wei-Jen, "Forecasting the wind generation using a two-stage network based on meteorological information," IEEE Trans. Energy Convers. , vol. 24, no. 2, pp. 474-482, Jun. 2009.
    • (2009) IEEE Trans. Energy Convers. , vol.24 , Issue.2 , pp. 474-482
    • Shu, F.1    Liao, J.R.2    Yokoyama, R.3    Luonan, C.4    Wei-Jen, L.5
  • 34
    • 84859036543 scopus 로고    scopus 로고
    • AWNN-assisted wind power forecasting using feed-forward neural network
    • Apr.
    • K. Bhaskar and S. N. Singh, "AWNN-assisted wind power forecasting using feed-forward neural network," IEEE Trans. Sustain. Energy, vol. 3, no. 2, pp. 306-315, Apr. 2012.
    • (2012) IEEE Trans. Sustain. Energy , vol.3 , Issue.2 , pp. 306-315
    • Bhaskar, K.1    Singh, S.N.2
  • 35
    • 61749097513 scopus 로고    scopus 로고
    • Skill forecasting from ensemble predictions of wind power
    • July-Aug.
    • P. Pinson, H. Nielsen, H. Madsen, and G. Kariniotakis, "Skill forecasting from ensemble predictions of wind power," Appl. Energy, vol. 86, no. 7-8, pp. 1326-1334, July-Aug. 2009.
    • (2009) Appl. Energy , vol.86 , Issue.7-8 , pp. 1326-1334
    • Pinson, P.1    Nielsen, H.2    Madsen, H.3    Kariniotakis, G.4
  • 36
    • 28844445456 scopus 로고    scopus 로고
    • California wind energy forecasting system development and testing, phase 2: 12-month testing
    • Palo Alto, CA, USA, Tech. Rep. 1007339 Jan.
    • "California wind energy forecasting system development and testing, phase 2: 12-month testing," Electric Power Research Institute (EPRI), Palo Alto, CA, USA, Tech. Rep. 1007339, Jan. 2003.
    • (2003) Electric Power Research Institute (EPRI)
  • 37
    • 84944036781 scopus 로고    scopus 로고
    • The Casandra project: Results of wind power 72-hr range daily operational forecasting in Spain
    • Jul.
    • M. A. Gaertner et al. , "The Casandra project: results of wind power 72-hr range daily operational forecasting in Spain," in Proc. Eur. Wind Energy Conf. , Madrid, Spain, Jul. 2003, pp. 1-6.
    • (2003) Proc. Eur. Wind Energy Conf., Madrid, Spain , pp. 1-6
    • Gaertner, M.A.1
  • 38
    • 84944118039 scopus 로고    scopus 로고
    • Meteologica [Online]. Available accessed on Dec. 2014
    • Meteologica [Online]. Available: http://www. meteologica. com, accessed on Dec. 2014.
  • 39
    • 84944030477 scopus 로고    scopus 로고
    • State-of-the-art in wind power prediction in Germany and international developments
    • Berlin, Germany Dec.
    • M. Lange and U. Focken, "State-of-the-art in wind power prediction in Germany and international developments," in Proc. 2nd Int. Workshop Feed-in Cooper. , Berlin, Germany, Dec. 2005, pp. 1-8.
    • (2005) Proc. 2nd Int. Workshop Feed-in Cooper. , pp. 1-8
    • Lange, M.1    Focken, U.2
  • 44
    • 84944118041 scopus 로고    scopus 로고
    • Sipreólico: A wind power prediction tool for the Spanish peninsular power system operation
    • J. Usaola et al. , "Sipreólico: A wind power prediction tool for the Spanish peninsular power system operation," in Proc. Eur. Wind Energy Conf. , 2002.
    • (2002) Proc. Eur. Wind Energy Conf.
    • Usaola, J.1
  • 45
    • 84944118042 scopus 로고    scopus 로고
    • AleaSoft [Online]. Available accessed on Dec. 2014
    • AleaSoft [Online]. Available: http://www. aleasoft. com, accessed on Dec. 2014.
  • 46
    • 84876529251 scopus 로고    scopus 로고
    • Garrad Hassan and Partners Ltd. , Bristol, U. K. , Tech. Rep. DTI Contract No: W/45/00572
    • G. Gow, "Forecasting short-term wind farm production," Garrad Hassan and Partners Ltd. , Bristol, U. K. , Tech. Rep. DTI Contract No: W/45/00572, 2003.
    • (2003) Forecasting Short-term Wind Farm Production
    • Gow, G.1
  • 48
    • 84944056712 scopus 로고    scopus 로고
    • Windlogics Inc Windlogics Inc. , Tech. Rep. Contract No: RD-57 Oct. [Online]. Available accessed on May 2015
    • Windlogics Inc. , "Renewable energy research and development projectfinal report," Windlogics Inc. , Tech. Rep. Contract No: RD-57, Oct. 2008 [Online]. Available: http://www. xcelenergy. com/staticfiles/xe/Corporate/Renewable%20Energy%20Grants/Windenergyforecasting-Final-Report. pdf, accessed on May 2015.
    • (2008) Renewable Energy Research and Development Projectfinal Report
  • 52
    • 85031847932 scopus 로고    scopus 로고
    • Support vector machines in the wind energy framework a new model for wind energy forecasting
    • L. Frias et al. , "Support vector machines in the wind energy framework a new model for wind energy forecasting", in Proc. Eur. Wind Energy Conf. , Marseille, France, 2009, pp. 1-9.
    • (2009) Proc. Eur. Wind Energy Conf. , Marseille, France , pp. 1-9
    • Frias, L.1
  • 54
    • 84944118045 scopus 로고    scopus 로고
    • Aeolis Forecasting Service [Online]. Available accessed on Oct. 2014
    • Aeolis Forecasting Service [Online]. Available: http://www. windknowhow. com, accessed on Oct. 2014.
  • 55
    • 84944118046 scopus 로고    scopus 로고
    • An overview of AWS Truewind's approach and experience in providing wind power production forecasting services to utilities and balancing authorities in North America
    • Portland, OR, USA Jul.
    • J. W. Zack, "An overview of AWS Truewind's approach and experience in providing wind power production forecasting services to utilities and balancing authorities in North America," presented at the International Wind Forecasting Workshop, Portland, OR, USA, Jul. 2008.
    • (2008) International Wind Forecasting Workshop
    • Zack, J.W.1
  • 57
    • 84900552080 scopus 로고    scopus 로고
    • Enhanced nationwide wind-electric power monitoring and forecast system
    • May
    • E. Terciyanli et al. , "Enhanced nationwide wind-electric power monitoring and forecast system," IEEE Trans. Ind. Informat. , vol. 10, no. 2, pp. 1171-1184, May 2014.
    • (2014) IEEE Trans. Ind. Informat. , vol.10 , Issue.2 , pp. 1171-1184
    • Terciyanli, E.1
  • 58
    • 79956304679 scopus 로고    scopus 로고
    • Nationwide real-time monitoring system for electrical quantities and power quality of the electricity transmission system
    • May
    • T. Demirci et al. , "Nationwide real-time monitoring system for electrical quantities and power quality of the electricity transmission system," IET Gen. Transmiss. Distrib. , vol. 5, no. 5, pp. 540-550, May 2011.
    • (2011) IET Gen. Transmiss. Distrib. , vol.5 , Issue.5 , pp. 540-550
    • Demirci, T.1
  • 59
    • 84910048385 scopus 로고    scopus 로고
    • Wind power forecasting in a residential location as part of the energy box management decision tool
    • Nov.
    • C. S. Ioakimidis, L. J. Oliveira, and K. N. Genikomsakis, "Wind power forecasting in a residential location as part of the energy box management decision tool," IEEE Trans. Ind. Informat. , vol. 10, no. 4, pp. 2103-2111, Nov. 2014.
    • (2014) IEEE Trans. Ind. Informat. , vol.10 , Issue.4 , pp. 2103-2111
    • Ioakimidis, C.S.1    Oliveira, L.J.2    Genikomsakis, K.N.3
  • 60
    • 0003126173 scopus 로고    scopus 로고
    • Improving the Rprop Learning algorithm
    • Charlotte, NC, USA: ICSC Academic Press
    • C. Igel and M. Hüsken, "Improving the Rprop Learning algorithm," in Proc. 2nd Int. Symp. Neural Comput. , Charlotte, NC, USA: ICSC Academic Press, 2000, pp. 115-121.
    • (2000) Proc. 2nd Int. Symp. Neural Comput. , pp. 115-121
    • Igel, C.1    Hüsken, M.2
  • 61
    • 4944228528 scopus 로고    scopus 로고
    • Dept. Computer Science, National Taiwan Univ. , Tech. Rep. Jul. [Online]. Available accessed on May 2015
    • C.-W. Hsu, C.-C. Chang, and C.-J. Lin, "A practical guide to support vector classification," Dept. Computer Science, National Taiwan Univ. , Tech. Rep. , Jul. 2003 [Online]. Available: http://www. csie. ntu. edu. tw/~cjlin/papers/guide/guide. pdf, accessed on May 2015.
    • (2003) A Practical Guide to Support Vector Classification
    • Hsu, C.-W.1    Chang, C.-C.2    Lin, C.-J.3
  • 62
    • 84944118048 scopus 로고    scopus 로고
    • RITM [Online]. Available accessed on May 2015
    • RITM [Online]. Available: http://www. ritm. gov. tr, accessed on May 2015.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.