-
1
-
-
49649105634
-
Nanomaterials for rechargeable lithium batteries
-
Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries Angew. Chem., Int. Ed. 2008, 47, 2930-2946 10.1002/anie.200702505
-
(2008)
Angew. Chem., Int. Ed.
, vol.47
, pp. 2930-2946
-
-
Bruce, P.G.1
Scrosati, B.2
Tarascon, J.M.3
-
2
-
-
4043112177
-
Sustainable hydrogen production
-
Turner, J. A. Sustainable hydrogen production Science 2004, 305, 972-974 10.1126/science.1103197
-
(2004)
Science
, vol.305
, pp. 972-974
-
-
Turner, J.A.1
-
3
-
-
57049185903
-
Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries
-
Yoo, E.; Kim, J.; Hosono, E.; Zhou, H.-s.; Kudo, T.; Honma, I. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries Nano Lett. 2008, 8, 2277-2282 10.1021/nl800957b
-
(2008)
Nano Lett.
, vol.8
, pp. 2277-2282
-
-
Yoo, E.1
Kim, J.2
Hosono, E.3
Zhou, H.-S.4
Kudo, T.5
Honma, I.6
-
4
-
-
84928382920
-
Recent development in 2D materials beyond graphene
-
Gupta, A.; Sakthivel, T.; Seal, S. Recent development in 2D materials beyond graphene Prog. Mater. Sci. 2015, 73, 44-126 10.1016/j.pmatsci.2015.02.002
-
(2015)
Prog. Mater. Sci.
, vol.73
, pp. 44-126
-
-
Gupta, A.1
Sakthivel, T.2
Seal, S.3
-
5
-
-
58449087101
-
Functionalization of Porous Carbon Materials with Designed Pore Architecture
-
Stein, A.; Wang, Z.; Fierke, M. A. Functionalization of Porous Carbon Materials with Designed Pore Architecture Adv. Mater. 2009, 21, 265-293 10.1002/adma.200801492
-
(2009)
Adv. Mater.
, vol.21
, pp. 265-293
-
-
Stein, A.1
Wang, Z.2
Fierke, M.A.3
-
6
-
-
84865339952
-
Templated Nanocarbons for Energy Storage
-
Nishihara, H.; Kyotani, T. Templated Nanocarbons for Energy Storage Adv. Mater. 2012, 24, 4473-4498 10.1002/adma.201201715
-
(2012)
Adv. Mater.
, vol.24
, pp. 4473-4498
-
-
Nishihara, H.1
Kyotani, T.2
-
7
-
-
84930333065
-
Two-dimensional transition metal dichalcogenide nanosheet-based composites
-
Tan, C.; Zhang, H. Two-dimensional transition metal dichalcogenide nanosheet-based composites Chem. Soc. Rev. 2015, 44, 2713-2731 10.1039/C4CS00182F
-
(2015)
Chem. Soc. Rev.
, vol.44
, pp. 2713-2731
-
-
Tan, C.1
Zhang, H.2
-
8
-
-
8844278319
-
2 nanowires made by the "oriented attachment" mechanism
-
2 nanowires made by the "oriented attachment" mechanism J. Am. Chem. Soc. 2004, 126, 14943-14949 10.1021/ja048068s
-
(2004)
J. Am. Chem. Soc.
, vol.126
, pp. 14943-14949
-
-
Adachi, M.1
Murata, Y.2
Takao, J.3
Jiu, J.4
Sakamoto, M.5
Wang, F.6
-
9
-
-
24944568593
-
Mesocrystals: Inorganic superstructures made by highly parallel crystallization and controlled alignment
-
Cölfen, H.; Antonietti, M. Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment Angew. Chem., Int. Ed. 2005, 44, 5576-5591 10.1002/anie.200500496
-
(2005)
Angew. Chem., Int. Ed.
, vol.44
, pp. 5576-5591
-
-
Cölfen, H.1
Antonietti, M.2
-
10
-
-
67749111685
-
2 nanorods on transparent conducting substrates for dye-sensitized solar cells
-
2 nanorods on transparent conducting substrates for dye-sensitized solar cells J. Am. Chem. Soc. 2009, 131, 3985-3990 10.1021/ja8078972
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 3985-3990
-
-
Liu, B.1
Aydil, E.S.2
-
11
-
-
50049114809
-
Vertically oriented hexagonal mesoporous films formed through nanometre-scale epitaxy
-
Richman, E. K.; Brezesinski, T.; Tolbert, S. H. Vertically oriented hexagonal mesoporous films formed through nanometre-scale epitaxy Nat. Mater. 2008, 7, 712-717 10.1038/nmat2257
-
(2008)
Nat. Mater.
, vol.7
, pp. 712-717
-
-
Richman, E.K.1
Brezesinski, T.2
Tolbert, S.H.3
-
12
-
-
84871390660
-
A facile approach for controlling the orientation of one-dimensional mesochannels in mesoporous titania films
-
Shan, F.; Lu, X.; Zhang, Q.; Wu, J.; Wang, Y.; Bian, F.; Lu, Q.; Fei, Z.; Dyson, P. J. A facile approach for controlling the orientation of one-dimensional mesochannels in mesoporous titania films J. Am. Chem. Soc. 2012, 134, 20238-20241 10.1021/ja309168f
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 20238-20241
-
-
Shan, F.1
Lu, X.2
Zhang, Q.3
Wu, J.4
Wang, Y.5
Bian, F.6
Lu, Q.7
Fei, Z.8
Dyson, P.J.9
-
13
-
-
33646025564
-
Formation of highly ordered mesoporous titania films consisting of crystalline nanopillars with inverse mesospace by structural transformation
-
Wu, C.-W.; Ohsuna, T.; Kuwabara, M.; Kuroda, K. Formation of highly ordered mesoporous titania films consisting of crystalline nanopillars with inverse mesospace by structural transformation J. Am. Chem. Soc. 2006, 128, 4544-4545 10.1021/ja060453p
-
(2006)
J. Am. Chem. Soc.
, vol.128
, pp. 4544-4545
-
-
Wu, C.-W.1
Ohsuna, T.2
Kuwabara, M.3
Kuroda, K.4
-
14
-
-
85041474471
-
2 microspheres with single-crystal-like anatase walls for high-efficiency optoelectronic devices
-
2 microspheres with single-crystal-like anatase walls for high-efficiency optoelectronic devices Sci. Adv. 2015, 1, e1500166 10.1126/sciadv.1500166
-
(2015)
Sci. Adv.
, vol.1
-
-
Liu, Y.1
Che, R.2
Chen, G.3
Fan, J.4
Sun, Z.5
Wu, Z.6
Wang, M.7
Li, B.8
Wei, J.9
Wei, Y.10
-
15
-
-
84880372807
-
2 nanosheets
-
2 nanosheets J. Am. Chem. Soc. 2013, 135, 10274-10277 10.1021/ja404523s
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 10274-10277
-
-
Lukowski, M.A.1
Daniel, A.S.2
Meng, F.3
Forticaux, A.4
Li, L.5
Jin, S.6
-
16
-
-
80755125655
-
2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials
-
2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials Nano Lett. 2011, 11, 4826-4830 10.1021/nl202675f
-
(2011)
Nano Lett.
, vol.11
, pp. 4826-4830
-
-
Hwang, H.1
Kim, H.2
Cho, J.3
-
17
-
-
84902277236
-
2 hybrid technology for large-scale two-dimensional electronics
-
2 hybrid technology for large-scale two-dimensional electronics Nano Lett. 2014, 14, 3055-3063 10.1021/nl404795z
-
(2014)
Nano Lett.
, vol.14
, pp. 3055-3063
-
-
Yu, L.1
Lee, Y.-H.2
Ling, X.3
Santos, E.J.4
Shin, Y.C.5
Lin, Y.6
Dubey, M.7
Kaxiras, E.8
Kong, J.9
Wang, H.10
-
18
-
-
84919464531
-
2 p-n Junction Formed by Chemical Doping for Use in High-Performance Optoelectronics
-
2 p-n Junction Formed by Chemical Doping for Use in High-Performance Optoelectronics ACS Nano 2014, 8, 9332-9340 10.1021/nn503284n
-
(2014)
ACS Nano
, vol.8
, pp. 9332-9340
-
-
Choi, M.S.1
Qu, D.2
Lee, D.3
Liu, X.4
Watanabe, K.5
Taniguchi, T.6
Yoo, W.J.7
-
19
-
-
84895067493
-
Two-dimensional nanosheets for photoelectrochemical water splitting: Possibilities and opportunities
-
Zhou, M.; Lou, X. W. D.; Xie, Y. Two-dimensional nanosheets for photoelectrochemical water splitting: Possibilities and opportunities Nano Today 2013, 8, 598-618 10.1016/j.nantod.2013.12.002
-
(2013)
Nano Today
, vol.8
, pp. 598-618
-
-
Zhou, M.1
Lou, X.W.D.2
Xie, Y.3
-
20
-
-
70349668809
-
Graphene: The New Two-Dimensional Nanomaterial
-
Rao, C. e. N. e. R.; Sood, A. e. K.; Subrahmanyam, K. e. S.; Govindaraj, A. Graphene: The New Two-Dimensional Nanomaterial Angew. Chem., Int. Ed. 2009, 48, 7752-7777 10.1002/anie.200901678
-
(2009)
Angew. Chem., Int. Ed.
, vol.48
, pp. 7752-7777
-
-
Rao, C.E.N.E.R.1
Sood, A.E.K.2
Subrahmanyam, K.E.S.3
Govindaraj, A.4
-
21
-
-
79959993089
-
Bioinspired Effective Prevention of Restacking in Multilayered Graphene Films: Towards the Next Generation of High-Performance Supercapacitors
-
Yang, X.; Zhu, J.; Qiu, L.; Li, D. Bioinspired Effective Prevention of Restacking in Multilayered Graphene Films: Towards the Next Generation of High-Performance Supercapacitors Adv. Mater. 2011, 23, 2833-2838 10.1002/adma.201100261
-
(2011)
Adv. Mater.
, vol.23
, pp. 2833-2838
-
-
Yang, X.1
Zhu, J.2
Qiu, L.3
Li, D.4
-
22
-
-
77954634200
-
Graphene-based materials as supercapacitor electrodes
-
Zhang, L. L.; Zhou, R.; Zhao, X. Graphene-based materials as supercapacitor electrodes J. Mater. Chem. 2010, 20, 5983-5992 10.1039/c000417k
-
(2010)
J. Mater. Chem.
, vol.20
, pp. 5983-5992
-
-
Zhang, L.L.1
Zhou, R.2
Zhao, X.3
-
23
-
-
84887245438
-
2/Nitrogen-Doped Graphene Nanosheets with Highly Reversible Lithium Storage
-
2/Nitrogen-Doped Graphene Nanosheets with Highly Reversible Lithium Storage Adv. Energy Mater. 2013, 3, 839-844 10.1002/aenm.201201108
-
(2013)
Adv. Energy Mater.
, vol.3
, pp. 839-844
-
-
Chang, K.1
Geng, D.2
Li, X.3
Yang, J.4
Tang, Y.5
Cai, M.6
Li, R.7
Sun, X.8
-
24
-
-
79955891162
-
2 Nanoparticles Grown on Graphene: An Advanced Catalyst for the Hydrogen Evolution Reaction
-
2 Nanoparticles Grown on Graphene: An Advanced Catalyst for the Hydrogen Evolution Reaction J. Am. Chem. Soc. 2011, 133, 7296-7299 10.1021/ja201269b
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 7296-7299
-
-
Li, Y.G.1
Wang, H.L.2
Xie, L.M.3
Liang, Y.Y.4
Hong, G.S.5
Dai, H.J.6
-
25
-
-
84923344628
-
2-Graphene-Carbon Nanotube Nanocomposites: Advantageous Functional Integration of 0D, 1D, and 2D Nanostructures
-
2-Graphene-Carbon Nanotube Nanocomposites: Advantageous Functional Integration of 0D, 1D, and 2D Nanostructures Adv. Energy Mater. 2015, 5, 401170 10.1002/aenm.201401170
-
(2015)
Adv. Energy Mater.
, vol.5
, pp. 401170
-
-
Zhu, C.1
Mu, X.2
Van Aken, P.A.3
Maier, J.4
Yu, Y.5
-
26
-
-
84874036664
-
2/Polyaniline Nanowires with Excellent Electrochemical Performance for Lithium-Ion Batteries
-
2/Polyaniline Nanowires with Excellent Electrochemical Performance for Lithium-Ion Batteries Adv. Mater. 2013, 25, 1180-1184 10.1002/adma.201203999
-
(2013)
Adv. Mater.
, vol.25
, pp. 1180-1184
-
-
Yang, L.1
Wang, S.2
Mao, J.3
Deng, J.4
Gao, Q.5
Tang, Y.6
Schmidt, O.G.7
-
27
-
-
84928955081
-
2 Anchored on Carbon Nanosheet for Lithium-Ion Battery Anode
-
2 Anchored on Carbon Nanosheet for Lithium-Ion Battery Anode ACS Nano 2015, 9, 3837-3848 10.1021/nn506850e
-
(2015)
ACS Nano
, vol.9
, pp. 3837-3848
-
-
Zhou, J.1
Qin, J.2
Zhang, X.3
Shi, C.4
Liu, E.5
Li, J.6
Zhao, N.7
He, C.8
-
28
-
-
84893860567
-
2 Embedded in Carbon Nanofibers with Excellent Electrochemical Performance for Lithium and Sodium Storage
-
2 Embedded in Carbon Nanofibers with Excellent Electrochemical Performance for Lithium and Sodium Storage Angew. Chem., Int. Ed. 2014, 53, 2152-2156 10.1002/anie.201308354
-
(2014)
Angew. Chem., Int. Ed.
, vol.53
, pp. 2152-2156
-
-
Zhu, C.1
Mu, X.2
Van Aken, P.A.3
Yu, Y.4
Maier, J.5
-
29
-
-
85027918537
-
2-Carbon Interoverlapped Superstructure: Engineering Ideal Atomic Interface for Lithium Ion Storage
-
2-Carbon Interoverlapped Superstructure: Engineering Ideal Atomic Interface for Lithium Ion Storage Adv. Mater. 2015, 27, 3687 10.1002/adma.201501059
-
(2015)
Adv. Mater.
, vol.27
, pp. 3687
-
-
Jiang, H.1
Ren, D.2
Wang, H.3
Hu, Y.4
Guo, S.5
Yuan, H.6
Hu, P.7
Zhang, L.8
Li, C.9
-
30
-
-
84907973498
-
2 microboxes constructed by nanosheets with enhanced electrochemical properties for lithium storage and water splitting
-
2 microboxes constructed by nanosheets with enhanced electrochemical properties for lithium storage and water splitting Energy Environ. Sci. 2014, 7, 3302-3306 10.1039/C4EE01932F
-
(2014)
Energy Environ. Sci.
, vol.7
, pp. 3302-3306
-
-
Zhang, L.1
Wu, H.B.2
Yan, Y.3
Wang, X.4
Lou, X.W.D.5
-
34
-
-
76249094640
-
Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries
-
Du, G.; Guo, Z.; Wang, S.; Zeng, R.; Chen, Z.; Liu, H. Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries Chem. Commun. 2010, 46, 1106-1108 10.1039/B920277C
-
(2010)
Chem. Commun.
, vol.46
, pp. 1106-1108
-
-
Du, G.1
Guo, Z.2
Wang, S.3
Zeng, R.4
Chen, Z.5
Liu, H.6
-
35
-
-
84870497692
-
2 nanospheres with excellent Li-ion storage properties
-
2 nanospheres with excellent Li-ion storage properties CrystEngComm 2012, 14, 8323-8325 10.1039/c2ce26447a
-
(2012)
CrystEngComm
, vol.14
, pp. 8323-8325
-
-
Park, S.-K.1
Yu, S.-H.2
Woo, S.3
Ha, J.4
Shin, J.5
Sung, Y.-E.6
Piao, Y.7
-
36
-
-
84867310395
-
2 with Expanded Spacing of the (002) Crystal Plane for Ultrafast Lithium Ion Storage
-
2 with Expanded Spacing of the (002) Crystal Plane for Ultrafast Lithium Ion Storage Adv. Energy Mater. 2012, 2, 970-975 10.1002/aenm.201200087
-
(2012)
Adv. Energy Mater.
, vol.2
, pp. 970-975
-
-
Liu, H.1
Su, D.2
Zhou, R.3
Sun, B.4
Wang, G.5
Qiao, S.Z.6
-
37
-
-
84887791833
-
2 spheres with nanosheets as anode materials for high-performance lithium ion batteries
-
2 spheres with nanosheets as anode materials for high-performance lithium ion batteries Electrochim. Acta 2014, 115, 165-169 10.1016/j.electacta.2013.10.098
-
(2014)
Electrochim. Acta
, vol.115
, pp. 165-169
-
-
Yang, T.1
Chen, Y.2
Qu, B.3
Mei, L.4
Lei, D.5
Zhang, H.6
Li, Q.7
Wang, T.8
-
38
-
-
84898062315
-
Hydrothermal exfoliated molybdenum disulfide nanosheets as anode material for lithium ion batteries
-
Liu, Y.; Ren, L.; Qi, X.; Yang, L.; Li, J.; Wang, Y.; Zhong, J. Hydrothermal exfoliated molybdenum disulfide nanosheets as anode material for lithium ion batteries J. Energy Chem. 2014, 23, 207-212 10.1016/S2095-4956(14)60137-6
-
(2014)
J. Energy Chem.
, vol.23
, pp. 207-212
-
-
Liu, Y.1
Ren, L.2
Qi, X.3
Yang, L.4
Li, J.5
Wang, Y.6
Zhong, J.7
-
39
-
-
84896498399
-
2 nanostructures with different lithium storage properties
-
2 nanostructures with different lithium storage properties J. Alloys Compd. 2014, 600, 84-90 10.1016/j.jallcom.2014.02.127
-
(2014)
J. Alloys Compd.
, vol.600
, pp. 84-90
-
-
Wang, X.1
Zhang, Z.2
Chen, Y.3
Qu, Y.4
Lai, Y.5
Li, J.6
-
40
-
-
77955683172
-
2 Nanocomposite as an Anode Material for Lithium Ion Batteries
-
2 Nanocomposite as an Anode Material for Lithium Ion Batteries Chem. Mater. 2010, 22, 4522-4524 10.1021/cm101254j
-
(2010)
Chem. Mater.
, vol.22
, pp. 4522-4524
-
-
Xiao, J.1
Choi, D.2
Cosimbescu, L.3
Koech, P.4
Liu, J.5
Lemmon, J.P.6
-
41
-
-
84859603673
-
2: Evolution of Raman scattering
-
2: evolution of Raman scattering Adv. Funct. Mater. 2012, 22, 1385-1390 10.1002/adfm.201102111
-
(2012)
Adv. Funct. Mater.
, vol.22
, pp. 1385-1390
-
-
Li, H.1
Zhang, Q.2
Yap, C.C.R.3
Tay, B.K.4
Edwin, T.H.T.5
Olivier, A.6
Baillargeat, D.7
-
43
-
-
77952896966
-
2
-
2 ACS Nano 2010, 4, 2695-2700 10.1021/nn1003937
-
(2010)
ACS Nano
, vol.4
, pp. 2695-2700
-
-
Lee, C.1
Yan, H.2
Brus, L.E.3
Heinz, T.F.4
Hone, J.5
Ryu, S.6
-
44
-
-
84886416670
-
2 Ultrathin Nanosheets with Additional Active Edge Sites for Enhanced Electrocatalytic Hydrogen Evolution
-
2 Ultrathin Nanosheets with Additional Active Edge Sites for Enhanced Electrocatalytic Hydrogen Evolution Adv. Mater. 2013, 25, 5807-5813 10.1002/adma.201302685
-
(2013)
Adv. Mater.
, vol.25
, pp. 5807-5813
-
-
Xie, J.1
Zhang, H.2
Li, S.3
Wang, R.4
Sun, X.5
Zhou, M.6
Zhou, J.7
Lou, X.W.D.8
Xie, Y.9
-
45
-
-
84941067660
-
2 Nanoarchitectures Anchored into Graphene Foam for Enhanced Lithium-Ion Storage
-
2 Nanoarchitectures Anchored into Graphene Foam for Enhanced Lithium-Ion Storage Adv. Mater. 2014, 26, 7162-7169 10.1002/adma.201402728
-
(2014)
Adv. Mater.
, vol.26
, pp. 7162-7169
-
-
Wang, J.1
Liu, J.2
Chao, D.3
Yan, J.4
Lin, J.5
Shen, Z.X.6
-
46
-
-
84876590946
-
2-graphene composites as anode materials of Li-ion batteries
-
2-graphene composites as anode materials of Li-ion batteries J. Mater. Chem. A 2013, 1, 2202-2210 10.1039/C2TA00598K
-
(2013)
J. Mater. Chem. A
, vol.1
, pp. 2202-2210
-
-
Wang, Z.1
Chen, T.2
Chen, W.3
Chang, K.4
Ma, L.5
Huang, G.6
Chen, D.7
Lee, J.Y.8
-
47
-
-
77956958084
-
Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions
-
Cabana, J.; Monconduit, L.; Larcher, D.; Palacin, M. R. Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions Adv. Mater. 2010, 22, E170-E192 10.1002/adma.201000717
-
(2010)
Adv. Mater.
, vol.22
, pp. E170-E192
-
-
Cabana, J.1
Monconduit, L.2
Larcher, D.3
Palacin, M.R.4
-
48
-
-
84916944043
-
2 and CMK-3 for High-Capacity and Long-Cycle-Life Lithium Storage
-
2 and CMK-3 for High-Capacity and Long-Cycle-Life Lithium Storage Adv. Energy Mater. 2014, 4, 400902 10.1002/aenm.201400902
-
(2014)
Adv. Energy Mater.
, vol.4
, pp. 400902
-
-
Xu, X.1
Fan, Z.2
Yu, X.3
Ding, S.4
Yu, D.5
Lou, X.W.D.6
-
49
-
-
79959454526
-
Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water
-
Merki, D.; Fierro, S.; Vrubel, H.; Hu, X. Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water Chem. Sci. 2011, 2, 1262-1267 10.1039/C1SC00117E
-
(2011)
Chem. Sci.
, vol.2
, pp. 1262-1267
-
-
Merki, D.1
Fierro, S.2
Vrubel, H.3
Hu, X.4
|