메뉴 건너뛰기




Volumn 7, Issue 4, 1996, Pages 1047-1051

Comments on "Constructive learning of recurrent neural networks: Limitations of recurrent cascade correlation and a simple solution

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER ARCHITECTURE; FINITE AUTOMATA; LEARNING SYSTEMS; SIGNAL PROCESSING; THEOREM PROVING;

EID: 0030190837     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/72.508949     Document Type: Review
Times cited : (9)

References (49)
  • 1
    • 0001086881 scopus 로고
    • The recurrent cascade-correlation architecture
    • R. Lippmann, J. Moody, and D. Touretzky, Eds. San Mateo, CA: Morgan Kaufmann
    • S. Fahlman, "The recurrent cascade-correlation architecture," in Advances in Neural Information Processing Syst. 3, R. Lippmann, J. Moody, and D. Touretzky, Eds. San Mateo, CA: Morgan Kaufmann, 1991, pp. 190-196.
    • (1991) Advances in Neural Information Processing Syst. , vol.3 , pp. 190-196
    • Fahlman, S.1
  • 2
    • 0001770758 scopus 로고
    • Dynamic construction of finite-state automata from examples using hill-climbing
    • Ann Arbor, MI
    • M. Tomita, "Dynamic construction of finite-state automata from examples using hill-climbing," in Proc. 4th Annu. Cognitive Sci. Conf., Ann Arbor, MI, 1982, pp. 105-108.
    • (1982) Proc. 4th Annu. Cognitive Sci. Conf. , pp. 105-108
    • Tomita, M.1
  • 3
    • 0011241631 scopus 로고    scopus 로고
    • Finite state automata that recurrent cascade-correlation cannot represent
    • D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, Eds. Cambridge, MA: MIT Press
    • S. C. Kremer, "Finite state automata that recurrent cascade-correlation cannot represent," in Advances in Neural Information Processing Syst. 8, D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, Eds. Cambridge, MA: MIT Press, 1996.
    • (1996) Advances in Neural Information Processing Syst. , vol.8
    • Kremer, S.C.1
  • 4
    • 0011252246 scopus 로고
    • Efficient simulation of finite automata by neural nets
    • N. Alon, A. K. Dewdney, and T. J. Ott, "Efficient simulation of finite automata by neural nets," J. Assoc. Comput. Machinery, vol. 38, no. 2, pp. 495-514, 1991.
    • (1991) J. Assoc. Comput. Machinery , vol.38 , Issue.2 , pp. 495-514
    • Alon, N.1    Dewdney, A.K.2    Ott, T.J.3
  • 5
    • 0040973442 scopus 로고
    • An algebraic framework to represent finite state automata in single-layer recurrent neural networks
    • R. Alquezar and A. Sanfeliu, "An algebraic framework to represent finite state automata in single-layer recurrent neural networks," Neural Computa., vol. 7, no. 5, pp. 931-949, 1995.
    • (1995) Neural Computa. , vol.7 , Issue.5 , pp. 931-949
    • Alquezar, R.1    Sanfeliu, A.2
  • 6
    • 0000029787 scopus 로고
    • FIR and IIR synapses, a new neural-network architecture for time-series modelling
    • A. D. Back and A. C. Tsoi, "FIR and IIR synapses, a new neural-network architecture for time-series modelling," Neural Computa., vol. 3, no. 3, pp. 337-350, 1991.
    • (1991) Neural Computa. , vol.3 , Issue.3 , pp. 337-350
    • Back, A.D.1    Tsoi, A.C.2
  • 7
    • 0001163081 scopus 로고
    • Number of stable points for spin-glasses and neural networks of higher orders
    • P. Baldi and S. S. Venkatesh, "Number of stable points for spin-glasses and neural networks of higher orders," Phys. Rev. Lett., vol. 58, no. 9, pp. 913-915, 1987.
    • (1987) Phys. Rev. Lett. , vol.58 , Issue.9 , pp. 913-915
    • Baldi, P.1    Venkatesh, S.S.2
  • 11
    • 0000111307 scopus 로고
    • Finite-state automata and simple recurrent neural networks
    • A. Cleeremans, D. Servan-Schreiber, and J. McClelland, "Finite-state automata and simple recurrent neural networks," Neural Computa., vol. 1, no. 3, pp. 372-381, 1989.
    • (1989) Neural Computa. , vol.1 , Issue.3 , pp. 372-381
    • Cleeremans, A.1    Servan-Schreiber, D.2    McClelland, J.3
  • 13
    • 0001419757 scopus 로고
    • Distributed representations, simple recurrent networks, and grammatical structure
    • J. L. Elman, "Distributed representations, simple recurrent networks, and grammatical structure," Machine Learning, vol. 7, nos. 2/3, pp. 195-226, 1991.
    • (1991) Machine Learning , vol.7 , Issue.2-3 , pp. 195-226
    • Elman, J.L.1
  • 14
  • 15
    • 0029291395 scopus 로고
    • Unified integration of explicit rules and learning by example in recurrent networks
    • P. Frasconi, M. Gori, M. Maggini, and G. Soda, "Unified integration of explicit rules and learning by example in recurrent networks," IEEE Trans. Knowledge Data Eng., vol. 7, no. 2, pp. 340-346, 1995.
    • (1995) IEEE Trans. Knowledge Data Eng. , vol.7 , Issue.2 , pp. 340-346
    • Frasconi, P.1    Gori, M.2    Maggini, M.3    Soda, G.4
  • 16
    • 0030125824 scopus 로고    scopus 로고
    • Representation of finite state automata in recurrent radial basis function networks
    • _, "Representation of finite state automata in recurrent radial basis function networks," Machine Learning, vol. 23, pp. 5-32, 1996.
    • (1996) Machine Learning , vol.23 , pp. 5-32
  • 17
    • 0001657855 scopus 로고
    • Local feedback multilayered networks
    • P. Frasconi, M. Gori, and G. Soda, "Local feedback multilayered networks," Neural Comput., vol. 4, pp. 120-130, 1992.
    • (1992) Neural Comput. , vol.4 , pp. 120-130
    • Frasconi, P.1    Gori, M.2    Soda, G.3
  • 18
    • 0029560406 scopus 로고
    • Learning a class of large finite-state machines with a recurrent neural network
    • C. L. Giles, B. G. Horne, and T. Lin, "Learning a class of large finite-state machines with a recurrent neural network," Neural Networks, vol. 8, no. 9, p. 1359, 1995.
    • (1995) Neural Networks , vol.8 , Issue.9 , pp. 1359
    • Giles, C.L.1    Horne, B.G.2    Lin, T.3
  • 19
    • 0028392260 scopus 로고
    • Dynamic recurrent neural networks: Theory and applications
    • C. L. Giles, G. M. Kuhn, and R. J. Williams, "Dynamic recurrent neural networks: Theory and applications." IEEE Trans. Neural Networks, vol. 5, pp. 153-156, 1994.
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 153-156
    • Giles, C.L.1    Kuhn, G.M.2    Williams, R.J.3
  • 20
    • 0001327717 scopus 로고
    • Learning and extracting finite state automata with second-order recurrent neural networks
    • C. L. Giles, C. B. Miller, D. Chen, H. H. Chen, G. Z. Sun, and Y. C. Lee, "Learning and extracting finite state automata with second-order recurrent neural networks," Neural Computa., vol. 4, no. 3, pp. 393-405, 1992.
    • (1992) Neural Computa. , vol.4 , Issue.3 , pp. 393-405
    • Giles, C.L.1    Miller, C.B.2    Chen, D.3    Chen, H.H.4    Sun, G.Z.5    Lee, Y.C.6
  • 21
    • 0028495332 scopus 로고
    • Pruning recurrent neural networks for improved generalization performance
    • C. L. Giles and C. W. Omlin, "Pruning recurrent neural networks for improved generalization performance," IEEE Trans. Neural Networks, vol. 5, no. 5, pp. 848-851, 1994.
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.5 , pp. 848-851
    • Giles, C.L.1    Omlin, C.W.2
  • 22
    • 0000718697 scopus 로고
    • Higher-order recurrent networks and grammatical inference
    • D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann
    • C. L. Giles, G. Z. Sun, H. H. Chen, Y. C. Lee, and D. Chen, "Higher-order recurrent networks and grammatical inference," in Advances in Neural Information Processing Systems 2, D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, 1990, pp. 380-387.
    • (1990) Advances in Neural Information Processing Systems , vol.2 , pp. 380-387
    • Giles, C.L.1    Sun, G.Z.2    Chen, H.H.3    Lee, Y.C.4    Chen, D.5
  • 24
    • 0001039722 scopus 로고
    • An experimental comparison of recurrent neural network
    • G. Tesauro, D. Touretzky, and T. Leen, Eds. Cambridge, MA: MIT Press
    • B. G. Horne and C. L. Giles, "An experimental comparison of recurrent neural network," in Advances in Neural Information Processing Systems 7, G. Tesauro, D. Touretzky, and T. Leen, Eds. Cambridge, MA: MIT Press, 1995, pp. 697-704.
    • (1995) Advances in Neural Information Processing Systems , vol.7 , pp. 697-704
    • Horne, B.G.1    Giles, C.L.2
  • 25
    • 0002024453 scopus 로고
    • Bounds on the complexity of recurrent neural-network implementations of finite state machines
    • San Mateo, CA: Morgan Kaufmann
    • B. G. Horne and D. Hush, "Bounds on the complexity of recurrent neural-network implementations of finite state machines, in Advances in Neural Information Processing Systems 6, San Mateo, CA: Morgan Kaufmann, 1994, pp. 359-366.
    • (1994) Advances in Neural Information Processing Systems , vol.6 , pp. 359-366
    • Horne, B.G.1    Hush, D.2
  • 27
    • 84975570255 scopus 로고
    • Machine learning using a higher order correlational network
    • Y. C. Lee, G. Doolen, H. H. Chen, G. Z. Sun, T. Maxwell, H. Y. Lee, and C. L. Giles, "Machine learning using a higher order correlational network," Physica D, vol. 22-D, nos. 1-3, pp. 276-306, 1986.
    • (1986) Physica D , vol.22 D , Issue.1-3 , pp. 276-306
    • Lee, Y.C.1    Doolen, G.2    Chen, H.H.3    Sun, G.Z.4    Maxwell, T.5    Lee, H.Y.6    Giles, C.L.7
  • 28
    • 0010679250 scopus 로고
    • Syntactic neural networks
    • S. Lucas and R. Damper, "Syntactic neural networks," Connection Sci., vol. 2, pp. 199-225, 1990.
    • (1990) Connection Sci. , vol.2 , pp. 199-225
    • Lucas, S.1    Damper, R.2
  • 29
    • 0006311788 scopus 로고
    • First order recurrent neural networks and deterministic finite state automata
    • P. Manolios and R. Fanelli, "First order recurrent neural networks and deterministic finite state automata," Neural Computa., vol. 6, no. 6, pp. 1154-1172, 1994.
    • (1994) Neural Computa. , vol.6 , Issue.6 , pp. 1154-1172
    • Manolios, P.1    Fanelli, R.2
  • 30
    • 33747638845 scopus 로고
    • Computation: Finite and infinite machines
    • Englewood Cliffs, NJ: Prentice-Hall
    • M. L. Minsky, "Computation: Finite and infinite machines," in Neural Networks: Automata Made Up of Parts. Englewood Cliffs, NJ: Prentice-Hall, 1967.
    • (1967) Neural Networks: Automata Made Up of Parts
    • Minsky, M.L.1
  • 31
    • 0006217689 scopus 로고
    • SLUG: A connectionist architecture for inferring the structure of finite-state environments
    • M. C. Mozer and J. Bachrach, "SLUG: A connectionist architecture for inferring the structure of finite-state environments," Machine Learning, vol. 7, nos. 2/3, pp. 139-160, 1991.
    • (1991) Machine Learning , vol.7 , Issue.2-3 , pp. 139-160
    • Mozer, M.C.1    Bachrach, J.2
  • 32
    • 0025399567 scopus 로고
    • Identification and control of dynamical systems using neural networks
    • K. S. Narendra and K. Parthasarathy, "Identification and control of dynamical systems using neural networks," IEEE Trans. Neural Networks, vol. 1, p. 4, 1990.
    • (1990) IEEE Trans. Neural Networks , vol.1 , pp. 4
    • Narendra, K.S.1    Parthasarathy, K.2
  • 33
    • 33747710221 scopus 로고
    • A learning method tor recurrent networks based on minimization of finite automata
    • June
    • I. Noda and M. Nagao, "A learning method tor recurrent networks based on minimization of finite automata," in Proc. Int. Joint Conf. Neural Networks 1992, vol. I, pp. 27-32, June 1992.
    • (1992) Proc. Int. Joint Conf. Neural Networks 1992 , vol.1 , pp. 27-32
    • Noda, I.1    Nagao, M.2
  • 34
    • 0030286473 scopus 로고    scopus 로고
    • Constructing deterministic finite-state automata in recurrent neural networks
    • accepted
    • C. W. Omlin and C. L. Giles, "Constructing deterministic finite-state automata in recurrent neural networks," J. ACM, accepted.
    • J. ACM
    • Omlin, C.W.1    Giles, C.L.2
  • 35
    • 0030585201 scopus 로고    scopus 로고
    • Stable encoding of large finite-state automata in recurrent neural networks with sigmoid discriminants
    • _, "Stable encoding of large finite-state automata in recurrent neural networks with sigmoid discriminants," Neural Computa., vol. 8, no. 4, p. 675-696, 1996.
    • (1996) Neural Computa. , vol.8 , Issue.4 , pp. 675-696
  • 36
    • 0008990451 scopus 로고
    • Recurrent networks: Second-order properties and pruning
    • G. Tcsauro, D. Tourctzky, and T. Leen, Eds. Cambridge, MA: MIT Press
    • M. W. Pedersen and L. K. Hansen, "Recurrent networks: Second-order properties and pruning," in Advances in Neural Information Processing Systems 7, G. Tcsauro, D. Tourctzky, and T. Leen, Eds. Cambridge, MA: MIT Press, 1995.
    • (1995) Advances in Neural Information Processing Systems , vol.7
    • Pedersen, M.W.1    Hansen, L.K.2
  • 37
    • 0025519291 scopus 로고
    • Recursive distributed representations
    • J. B. Pollack, "Recursive distributed representations," Artificial Intell., vol. 46, pp. 77-105, 1990.
    • (1990) Artificial Intell. , vol.46 , pp. 77-105
    • Pollack, J.B.1
  • 38
    • 0001460434 scopus 로고
    • The induction of dynamical recognizers
    • _, "The induction of dynamical recognizers," Machine Learning, vol. 7, nos. 2/3, pp. 227-252, 1991.
    • (1991) Machine Learning , vol.7 , Issue.2-3 , pp. 227-252
  • 39
    • 0028399792 scopus 로고
    • Memory neuron networks for identification and control of dynamical systems
    • P. S. Sastry, G. Santharam, and K. P. Unnikrishnan, "Memory neuron networks for identification and control of dynamical systems," IEEE Trans. Neural Networks, vol. 5, pp. 306-319, 1994.
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 306-319
    • Sastry, P.S.1    Santharam, G.2    Unnikrishnan, K.P.3
  • 41
    • 0029255891 scopus 로고
    • On the computational power of neural nets
    • H. T. Siegelmann and E. D. Sontag, "On the computational power of neural nets," J. Comput. Syst. Sci., vol. 50, pp. 132-150, 1995.
    • (1995) J. Comput. Syst. Sci. , vol.50 , pp. 132-150
    • Siegelmann, H.T.1    Sontag, E.D.2
  • 42
    • 0026715336 scopus 로고
    • Turing equivalence of neural networks with second-order connection weights
    • Seattle, Piscataway, NJ
    • G. Z. Sun, H. H. Chen, Y. C. Lee, and C. L. Giles, "Turing equivalence of neural networks with second-order connection weights," in Proc. 1991 IEEE INNS Int. Joint Conf. Neural Networks vol. II, Seattle, pp. 357-362, Piscataway, NJ, 1991.
    • (1991) Proc. 1991 IEEE INNS Int. Joint Conf. Neural Networks , vol.2 , pp. 357-362
    • Sun, G.Z.1    Chen, H.H.2    Lee, Y.C.3    Giles, C.L.4
  • 44
    • 0040726637 scopus 로고
    • Learning and extracting initial mealy machines with a modular neural-network model
    • P. Tino and J. Sajda, "Learning and extracting initial mealy machines with a modular neural-network model," Neural Computata., vol. 7, no. 4, pp. 822-844, 1995.
    • (1995) Neural Computata. , vol.7 , Issue.4 , pp. 822-844
    • Tino, P.1    Sajda, J.2
  • 45
    • 0026895542 scopus 로고
    • The gamma model - A new neural network for temporal processing
    • B. de Vries and J. Principe, "The gamma model - a new neural network for temporal processing," Neural Networks, vol. 5, no. 4, pp. 565-576, 1992.
    • (1992) Neural Networks , vol.5 , Issue.4 , pp. 565-576
    • De Vries, B.1    Principe, J.2
  • 46
    • 0001601299 scopus 로고
    • Induction of finite-state languages using second-order recurrent networks
    • R. L. Watrous and G. M. Kuhn, "Induction of finite-state languages using second-order recurrent networks," Neural Computa., vol. 4, no. 3, p. 406, 1992.
    • (1992) Neural Computa. , vol.4 , Issue.3 , pp. 406
    • Watrous, R.L.1    Kuhn, G.M.2
  • 47
    • 84976922520 scopus 로고
    • Sequential behavior and learning in evolved dynamical neural networks
    • B. M. Yamauchi and R. D. Beer, "Sequential behavior and learning in evolved dynamical neural networks," Adaptive Behavior, vol. 2, no. 3, pp. 219-246, 1994.
    • (1994) Adaptive Behavior , vol.2 , Issue.3 , pp. 219-246
    • Yamauchi, B.M.1    Beer, R.D.2
  • 48
    • 0000003489 scopus 로고
    • Learning finite state machines with self-clustering recurrent networks
    • Z. Zeng, R. M. Goodman, and P. Smyth, "Learning finite state machines with self-clustering recurrent networks," Neural Computa., vol. 5, no. 6, pp. 976-990, 1993.
    • (1993) Neural Computa. , vol.5 , Issue.6 , pp. 976-990
    • Zeng, Z.1    Goodman, R.M.2    Smyth, P.3
  • 49
    • 0028396478 scopus 로고
    • Discrete recurrent neural networks for grammatical inference
    • _, "Discrete recurrent neural networks for grammatical inference," IEEE Trans. Neural Networks, vol. 5, pp. 320-330, 1994.
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 320-330


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.