메뉴 건너뛰기




Volumn 3, Issue , 1997, Pages 1924-1929

MUpstart-A constructive neural network learning algorithm for multi-category pattern classification

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION ERRORS; CONSTRUCTIVE LEARNING ALGORITHM; CONSTRUCTIVE NEURAL NETWORK; INPUT PATTERNS; MULTIPLE OUTPUTS; REAL-VALUED PATTERNS; REAL-WORLD DATASETS;

EID: 0030688750     PISSN: 10987576     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICNN.1997.614193     Document Type: Conference Paper
Times cited : (10)

References (13)
  • 1
    • 0028390208 scopus 로고
    • A constructive algorithm that converges for real-valued input patterns
    • N. Burgess. A constructive algorithm that converges for real-valued input patterns. International Journal of Neural Systems, 5(l):59-66,1994.
    • (1994) International Journal of Neural Systems , vol.5 , Issue.1 , pp. 59-66
    • Burgess, N.1
  • 2
    • 33749980438 scopus 로고
    • Analysis of decision boundaries generated by constructive neural network learning algorithms
    • July 17-21, Washington D.C.
    • C.-H. Chen, R. Parekh, J. Yang, K. Balakrishnan, and V. Honavar. Analysis of decision boundaries generated by constructive neural network learning algorithms. In Proceedings of WCNN'95, July 17-21, Washington D.C., volume 1,pages 628-635,1995.
    • (1995) Proceedings of WCNN'95 , vol.1 , pp. 628-635
    • Chen, C.-H.1    Parekh, R.2    Yang, J.3    Balakrishnan, K.4    Honavar, V.5
  • 3
    • 0000783575 scopus 로고
    • The upstart algorithm: A method for constructing and training feedforward neural networks
    • M. Frean. The upstart algorithm: A method for constructing and training feedforward neural networks. Neural Computation, 2:198-209,1990.
    • (1990) Neural Computation , vol.2 , pp. 198-209
    • Frean, M.1
  • 4
    • 0007133880 scopus 로고
    • A thermal perceptron learning rule
    • M. Frean. A thermal perceptron learning rule. Neural Computation, 4:946-957,1992.
    • (1992) Neural Computation , vol.4 , pp. 946-957
    • Frean, M.1
  • 5
    • 0025449027 scopus 로고
    • Perceptron based learning algorithms
    • June
    • S. Gallant. Perceptron based learning algorithms. IEEE Transactions on Neural Networks, 1(2):179-191, June 1990.
    • (1990) IEEE Transactions on Neural Networks , vol.1 , Issue.2 , pp. 179-191
    • Gallant, S.1
  • 7
    • 36149031331 scopus 로고
    • Learning feed-forward networks: The tiling algorithm
    • M. Mdzard and J. Nadal. Learning feed-forward networks: The tiling algorithm. J. Phys. A: Math. Gen., 22:2191-2203, 1989.
    • (1989) J. Phys. A: Math. Gen. , vol.22 , pp. 2191-2203
    • Mdzard, M.1    Nadal, J.2
  • 10
    • 33749970618 scopus 로고
    • Barycentric correction procedure: A fast method of learning threshold units
    • July 17-21, Washington D.C.
    • H. Poulard. Barycentric correction procedure: A fast method of learning threshold units. In Proceedings of WCNN'95, July 17-21, Washington D.C., volume 1, pages 710-713,1995.
    • (1995) Proceedings of WCNN'95 , vol.1 , pp. 710-713
    • Poulard, H.1
  • 11
    • 11144273669 scopus 로고
    • The perceptron: A probabilistic model for information storage and organization in the brain
    • F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65:386-408,1958.
    • (1958) Psychological Review , vol.65 , pp. 386-408
    • Rosenblatt, F.1
  • 13
    • 84892142646 scopus 로고    scopus 로고
    • Empirical comparison of graceful variants of the perceptron learning algorithm on non-separable data sets
    • J. Yang, R. G. Parekh, and V. G. Honavar. Empirical comparison of graceful variants of the perceptron learning algorithm on non-separable data sets. In preparation, 1997.
    • (1997) Preparation
    • Yang, J.1    Parekh, R.G.2    Honavar, V.G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.