메뉴 건너뛰기




Volumn 8, Issue 4, 2015, Pages 2519-2557

Efficient blind compressed sensing using sparsifying transforms with convergence guarantees and application to magnetic resonance imaging

Author keywords

Compressed sensing; Dictionary learning; Inverse problems; Magnetic resonance imaging; Medical imaging; Sparse representation; Sparsifying transforms

Indexed keywords

COMPRESSED SENSING; DISCRETE COSINE TRANSFORMS; IMAGE CODING; IMAGE RECONSTRUCTION; INVERSE PROBLEMS; MAGNETIC RESONANCE IMAGING; MAGNETISM; MEDICAL IMAGE PROCESSING; MEDICAL IMAGING; MEDICAL PROBLEMS; RESONANCE; SIGNAL RECONSTRUCTION;

EID: 84951327447     PISSN: None     EISSN: 19364954     Source Type: Journal    
DOI: 10.1137/141002293     Document Type: Article
Times cited : (123)

References (85)
  • 1
    • 67349251766 scopus 로고    scopus 로고
    • Sparse and redundant modeling of image content using an image-signaturedictionary
    • M. Aharon and M. Elad, Sparse and redundant modeling of image content using an image-signaturedictionary, SIAM J. Imaging Sci, 1 (2008), pp. 228–247.
    • (2008) SIAM J. Imaging Sci , vol.1 , pp. 228-247
    • Aharon, M.1    Elad, M.2
  • 2
    • 33750383209 scopus 로고    scopus 로고
    • K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
    • M. Aharon, M. Elad, and A. Bruckstein, K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation, IEEE Trans. Signal Process, 54 (2006), pp. 4311–4322.
    • (2006) IEEE Trans. Signal Process , vol.54 , pp. 4311-4322
    • Aharon, M.1    Elad, M.2    Bruckstein, A.3
  • 3
    • 77953092582 scopus 로고    scopus 로고
    • Proximal alternating minimization and projection methods for nonconvex problems: An approach based on the Kurdyka-_Lojasiewicz inequality
    • H. Attouch, J. Bolte, P. Redont, and A. Soubeyran, Proximal alternating minimization and projection methods for nonconvex problems: An approach based on the Kurdyka-_Lojasiewicz inequality, Math. Oper. Res, 35 (2010), pp. 438–457.
    • (2010) Math. Oper. Res , vol.35 , pp. 438-457
    • Attouch, H.1    Bolte, J.2    Redont, P.3    Soubeyran, A.4
  • 4
    • 52949144957 scopus 로고    scopus 로고
    • Spectrum-blind sampling and compressive sensing for continuous-index signals, in 2008 Information Theory and Applications Workshop Conference
    • Y. Bresler, Spectrum-blind sampling and compressive sensing for continuous-index signals, in 2008 Information Theory and Applications Workshop Conference, San Diego, 2008, pp. 547–554.
    • (2008) San Diego , pp. 547-554
    • Bresler, Y.1
  • 5
    • 0030399071 scopus 로고    scopus 로고
    • Atlanta
    • Y. Bresler and P. Feng, Spectrum-blind minimum-rate sampling and reconstruction of 2-D multiband signals, in Proceedings of ICASSP 96, Atlanta, pp. 701–704.
    • Proceedings of ICASSP 96 , pp. 701-704
    • Bresler, Y.1    Feng, P.2
  • 7
    • 59749104367 scopus 로고    scopus 로고
    • From sparse solutions of systems of equations to sparse modeling of signals and images
    • A. M. Bruckstein, D. L. Donoho, and M. Elad, From sparse solutions of systems of equations to sparse modeling of signals and images, SIAM Rev, 51 (2009), pp. 34–81.
    • (2009) SIAM Rev , vol.51 , pp. 34-81
    • Bruckstein, A.M.1    Donoho, D.L.2    Elad, M.3
  • 8
    • 31744440684 scopus 로고    scopus 로고
    • Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information
    • E. Candès, J. Romberg, and T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inform. Theory, 52 (2006), pp. 489–509.
    • (2006) IEEE Trans. Inform. Theory , vol.52 , pp. 489-509
    • Candès, E.1    Romberg, J.2    Tao, T.3
  • 9
    • 29144439194 scopus 로고    scopus 로고
    • Decoding by linear programming
    • E. Candès and T. Tao, Decoding by linear programming, IEEE Trans. Inform. Theory, 51 (2005), pp. 4203–4215.
    • (2005) IEEE Trans. Inform. Theory , vol.51 , pp. 4203-4215
    • Candès, E.1    Tao, T.2
  • 10
    • 70449490591 scopus 로고    scopus 로고
    • Fast algorithms for nonconvex compressive sensing: MRI reconstruction from very few data
    • ISBI), Boston
    • R. Chartrand, Fast algorithms for nonconvex compressive sensing: MRI reconstruction from very few data, in Proceedings of the IEEE International Symposium on Biomedical Imaging (ISBI), Boston, 2009, pp. 262–265.
    • (2009) Proceedings of the IEEE International Symposium on Biomedical Imaging , pp. 262-265
    • Chartrand, R.1
  • 11
    • 38849164794 scopus 로고    scopus 로고
    • Prior image constrained compressed sensing (PICCS): A method to accurately reconstruct dynamic CT images from highly undersampled projection data sets
    • G. H. Chen, J. Tang, and S. Leng, Prior image constrained compressed sensing (PICCS): A method to accurately reconstruct dynamic CT images from highly undersampled projection data sets, Med. Phys, 35 (2008), pp. 660–663.
    • (2008) Med. Phys , vol.35 , pp. 660-663
    • Chen, G.H.1    Tang, J.2    Leng, S.3
  • 13
    • 77956331390 scopus 로고    scopus 로고
    • Compressed sensing based cone-beam computed tomography reconstruction with a first-order method
    • K. Choi, J. Wang, L. Zhu, T.-S. Suh, S. Boyd, and L. Xing, Compressed sensing based cone-beam computed tomography reconstruction with a first-order method, Med. Phys, 37 (2010), pp. 5113–5125.
    • (2010) Med. Phys , vol.37 , pp. 5113-5125
    • Choi, K.1    Wang, J.2    Zhu, L.3    Suh, T.-S.4    Boyd, S.5    Xing, L.6
  • 15
    • 34547760736 scopus 로고    scopus 로고
    • Image denoising by sparse 3D transformdomain collaborative filtering
    • K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, Image denoising by sparse 3D transformdomain collaborative filtering, IEEE Trans. Image Process, 16 (2007), pp. 2080–2095.
    • (2007) IEEE Trans. Image Process , vol.16 , pp. 2080-2095
    • Dabov, K.1    Foi, A.2    Katkovnik, V.3    Egiazarian, K.4
  • 16
    • 65749110333 scopus 로고    scopus 로고
    • Subspace pursuit for compressive sensing signal reconstruction
    • W. Dai and O. Milenkovic, Subspace pursuit for compressive sensing signal reconstruction, IEEE Trans. Inform. Theory, 55 (2009), pp. 2230–2249.
    • (2009) IEEE Trans. Inform. Theory , vol.55 , pp. 2230-2249
    • Dai, W.1    Milenkovic, O.2
  • 18
    • 28944432472 scopus 로고    scopus 로고
    • The contourlet transform: An efficient directional multiresolution image representation
    • M. N. Do and M. Vetterli, The contourlet transform: An efficient directional multiresolution image representation, IEEE Trans. Image Process, 14 (2005), pp. 2091–2106.
    • (2005) IEEE Trans. Image Process , vol.14 , pp. 2091-2106
    • Do, M.N.1    Vetterli, M.2
  • 19
    • 33645712892 scopus 로고    scopus 로고
    • Compressed sensing
    • D. Donoho, Compressed sensing, IEEE Trans. Inform. Theory, 52 (2006), pp. 1289–1306.
    • (2006) IEEE Trans. Inform. Theory , vol.52 , pp. 1289-1306
    • Donoho, D.1
  • 20
    • 33646365077 scopus 로고    scopus 로고
    • For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution
    • D. L. Donoho, For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution, Comm. Pure Appl. Math, 59 (2004), pp. 797–829.
    • (2004) Comm. Pure Appl. Math , vol.59 , pp. 797-829
    • Donoho, D.L.1
  • 21
    • 33144483155 scopus 로고    scopus 로고
    • Stable recovery of sparse overcomplete representations in the presence of noise
    • D. L. Donoho, M. Elad, and V. N. Temlyakov, Stable recovery of sparse overcomplete representations in the presence of noise, IEEE Trans. Inform. Theory, 52 (2006), pp. 6–18.
    • (2006) IEEE Trans. Inform. Theory , vol.52 , pp. 6-18
    • Donoho, D.L.1    Elad, M.2    Temlyakov, V.N.3
  • 23
    • 33751379736 scopus 로고    scopus 로고
    • Image denoising via sparse and redundant representations over learned dictionaries
    • M. Elad and M. Aharon, Image denoising via sparse and redundant representations over learned dictionaries, IEEE Trans. Image Process, 15 (2006), pp. 3736–3745.
    • (2006) IEEE Trans. Image Process , vol.15 , pp. 3736-3745
    • Elad, M.1    Aharon, M.2
  • 24
    • 34249671661 scopus 로고    scopus 로고
    • Analysis versus synthesis in signal priors
    • M. Elad, P. Milanfar, and R. Rubinstein, Analysis versus synthesis in signal priors, Inverse Problems, 23 (2007), pp. 947–968.
    • (2007) Inverse Problems , vol.23 , pp. 947-968
    • Elad, M.1    Milanfar, P.2    Rubinstein, R.3
  • 25
    • 0041377826 scopus 로고    scopus 로고
    • Solving quadratically constrained least squares problems using a differential-geometric approach
    • L. Eldèn, Solving quadratically constrained least squares problems using a differential-geometric approach, BIT, 42 (2002), pp. 323–335.
    • (2002) BIT , vol.42 , pp. 323-335
    • Eldèn, L.1
  • 28
    • 0029746550 scopus 로고    scopus 로고
    • Spectrum-blind minimum-rate sampling and reconstruction of multiband signals
    • Atlanta
    • P. Feng and Y. Bresler, Spectrum-blind minimum-rate sampling and reconstruction of multiband signals, in ICASSP, Vol. 3, Atlanta, 1996, pp. 1689–1692.
    • (1996) ICASSP , vol.3 , pp. 1689-1692
    • Feng, P.1    Bresler, Y.2
  • 29
    • 0033692908 scopus 로고    scopus 로고
    • On the necessary density for spectrum-blind nonuniform sampling subject to quantization
    • Istanbul
    • M. Gastpar and Y. Bresler, On the necessary density for spectrum-blind nonuniform sampling subject to quantization, in ICASSP, Vol. 1, Istanbul, 2000, pp. 348–351.
    • (2000) ICASSP , vol.1 , pp. 348-351
    • Gastpar, M.1    Bresler, Y.2
  • 32
    • 0028805010 scopus 로고
    • Neuromagnetic source imaging with FOCUSS: A recursive weighted minimum norm algorithm
    • I. F. Gorodnitsky, J. George, and B. D. Rao, Neuromagnetic source imaging with FOCUSS: A recursive weighted minimum norm algorithm, Electrocephal. Clinical Neurophy, 95 (1995), pp. 231–251.
    • (1995) Electrocephal. Clinical Neurophy , vol.95 , pp. 231-251
    • Gorodnitsky, I.F.1    George, J.2    Rao, B.D.3
  • 33
    • 77953788888 scopus 로고    scopus 로고
    • Dictionary identification–sparse matrix-factorization via l1-minimization
    • R. Gribonval and K. Schnass, Dictionary identification–sparse matrix-factorization via l1-minimization, IEEE Trans. Inform. Theory, 56 (2010), pp. 3523–3539.
    • (2010) IEEE Trans. Inform. Theory , vol.56 , pp. 3523-3539
    • Gribonval, R.1    Schnass, K.2
  • 34
    • 79955593137 scopus 로고    scopus 로고
    • Wavelet-based compressed sensing using Gaussian scale mixtures
    • International Society for Magnetic Resonance in Medicine, Stockholm
    • Y. Kim, M. S. Nadar, and A. Bilgin, Wavelet-based compressed sensing using Gaussian scale mixtures, in Proc. ISMRM, International Society for Magnetic Resonance in Medicine, Stockholm, 2010, p. 4856.
    • (2010) Proc. ISMRM , pp. 4856
    • Kim, Y.1    Nadar, M.S.2    Bilgin, A.3
  • 35
    • 80051790019 scopus 로고    scopus 로고
    • A compressed sensing-based iterative algorithm for CT reconstruction and its possible application to phase contrast imaging
    • X. Li and S. Luo, A compressed sensing-based iterative algorithm for CT reconstruction and its possible application to phase contrast imaging, BioMedical Engineering OnLine, 10 (2011), 73.
    • (2011) Biomedical Engineering Online , vol.10 , pp. 73
    • Li, X.1    Luo, S.2
  • 36
    • 84878571362 scopus 로고    scopus 로고
    • Blind compressive sensing dynamic MRI
    • S. G. Lingala and M. Jacob, Blind compressive sensing dynamic MRI, IEEE Trans. Med. Imaging, 32 (2013), pp. 1132–1145.
    • (2013) IEEE Trans. Med. Imaging , vol.32 , pp. 1132-1145
    • Lingala, S.G.1    Jacob, M.2
  • 38
    • 36849088522 scopus 로고    scopus 로고
    • Sparse MRI: The application of compressed sensing for rapid MR imaging
    • M. Lustig, D. L. Donoho, and J. M. Pauly, Sparse MRI: The application of compressed sensing for rapid MR imaging, Magn. Resonance Med, 58 (2007), pp. 1182–1195.
    • (2007) Magn. Resonance Med , vol.58 , pp. 1182-1195
    • Lustig, M.1    Donoho, D.L.2    Pauly, J.M.3
  • 40
    • 76749107542 scopus 로고    scopus 로고
    • Online learning for matrix factorization and sparse coding
    • J. Mairal, F. Bach, J. Ponce, and G. Sapiro, Online learning for matrix factorization and sparse coding, J. Mach. Learn. Res, 11 (2010), pp. 19–60.
    • (2010) J. Mach. Learn. Res , vol.11 , pp. 19-60
    • Mairal, J.1    Bach, F.2    Ponce, J.3    Sapiro, G.4
  • 41
    • 39149089704 scopus 로고    scopus 로고
    • Sparse representation for color image restoration
    • J. Mairal, M. Elad, and G. Sapiro, Sparse representation for color image restoration, IEEE Trans. Image Process, 17 (2008), pp. 53–69.
    • (2008) IEEE Trans. Image Process , vol.17 , pp. 53-69
    • Mairal, J.1    Elad, M.2    Sapiro, G.3
  • 42
    • 55149117992 scopus 로고    scopus 로고
    • Learning multiscale sparse representations for image and video restoration
    • J. Mairal, G. Sapiro, and M. Elad, Learning multiscale sparse representations for image and video restoration, Multiscale Model. Simul, 7 (2008), pp. 214–241.
    • (2008) Multiscale Model. Simul , vol.7 , pp. 214-241
    • Mairal, J.1    Sapiro, G.2    Elad, M.3
  • 46
    • 0027842081 scopus 로고
    • Matching pursuits with time-frequency dictionaries
    • S. G. Mallat and Z. Zhang, Matching pursuits with time-frequency dictionaries, IEEE Trans. Signal Process, 41 (1993), pp. 3397–3415.
    • (1993) IEEE Trans. Signal Process , vol.41 , pp. 3397-3415
    • Mallat, S.G.1    Zhang, Z.2
  • 48
    • 85013103404 scopus 로고    scopus 로고
    • Iterative shrinkage algorithm for patch-smoothness regularized medical image recovery
    • to appear
    • Y. Mohsin, G. Ongie, and M. Jacob, Iterative shrinkage algorithm for patch-smoothness regularized medical image recovery, IEEE Trans. Med. Imaging, to appear.
    • IEEE Trans. Med. Imaging
    • Mohsin, Y.1    Ongie, G.2    Jacob, M.3
  • 50
    • 0029291966 scopus 로고
    • Sparse approximate solutions to linear systems
    • B. K. Natarajan, Sparse approximate solutions to linear systems, SIAM J. Comput, 24 (1995), pp. 227–234.
    • (1995) SIAM J. Comput , vol.24 , pp. 227-234
    • Natarajan, B.K.1
  • 51
    • 84885041479 scopus 로고    scopus 로고
    • Magnetic resonance image reconstruction using trained geometric directions in 2D redundant wavelets domain and non-convex optimization
    • B. Ning, X. Qu, D. Guo, C. Hu, and Z. Chen, Magnetic resonance image reconstruction using trained geometric directions in 2D redundant wavelets domain and non-convex optimization, Magn. Resonance Imaging, 31 (2013), pp. 1611–1622.
    • (2013) Magn. Resonance Imaging , vol.31 , pp. 1611-1622
    • Ning, B.1    Qu, X.2    Guo, D.3    Hu, C.4    Chen, Z.5
  • 52
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • B. A. Olshausen and D. J. Field, Emergence of simple-cell receptive field properties by learning a sparse code for natural images, Nature, 381 (1996), pp. 607–609.
    • (1996) Nature , vol.381 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2
  • 53
    • 0027814133 scopus 로고
    • Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition
    • Pacific Grove, CA
    • Y. Pati, R. Rezaiifar, and P. Krishnaprasad, Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition, in Asilomar Conference on Signals, Systems and Comput, Vol.1, Pacific Grove, CA, 1993, pp. 40–44.
    • (1993) Asilomar Conference on Signals, Systems and Comput , vol.1 , pp. 40-44
    • Pati, Y.1    Rezaiifar, R.2    Krishnaprasad, P.3
  • 56
    • 80054689517 scopus 로고
    • Hadamard transform image coding
    • W. K. Pratt, J. Kane, and H. C. Andrews, Hadamard transform image coding, Proc. IEEE, 57 (1969), pp. 58–68.
    • (1969) Proc. IEEE , vol.57 , pp. 58-68
    • Pratt, W.K.1    Kane, J.2    Andrews, H.C.3
  • 57
    • 33744530417 scopus 로고    scopus 로고
    • Encoding and reconstruction in parallel MRI
    • K. P. Pruessmann, Encoding and reconstruction in parallel MRI, NMR Biomed, 19 (2006), pp. 288–299.
    • (2006) NMR Biomed , vol.19 , pp. 288-299
    • Pruessmann, K.P.1
  • 58
    • 70349445473 scopus 로고    scopus 로고
    • Real-time dynamic MR image reconstruction using kalman filtered compressed sensing
    • Speech and Signal Processing, Taipei
    • C. Qiu, W. Lu, and N. Vaswani, Real-time dynamic MR image reconstruction using kalman filtered compressed sensing, in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, Taipei, 2009, pp. 393–396.
    • (2009) Proc. IEEE International Conference on Acoustics , pp. 393-396
    • Qiu, C.1    Lu, W.2    Vaswani, N.3
  • 59
    • 84954321921 scopus 로고    scopus 로고
    • May
    • X. Qu, PANO Code, http://www.quxiaobo.org/project/CS MRI PANO/Demo PANOSparseMRI.zip (May 2015).
    • (2015) PANO Code
    • Qu, X.1
  • 61
    • 84941110048 scopus 로고    scopus 로고
    • September
    • X. Qu, PBDWS Code, http://www.quxiaobo.org/project/CS MRI PBDWS/Demo PBDWSSparseMRI.zip (September 2014]).
    • (2014) PBDWS Code
    • Qu, X.1
  • 62
    • 84864021180 scopus 로고    scopus 로고
    • Undersampled MRI reconstruction with patch-based directional wavelets
    • X. Qu, D. Guo, B. Ning, Y. Hou, Y. Lin, S. Cai, and Z. Chen, Undersampled MRI reconstruction with patch-based directional wavelets, Magn. Resonance Imaging, 30 (2012), pp. 964–977.
    • (2012) Magn. Resonance Imaging , vol.30 , pp. 964-977
    • Qu, X.1    Guo, D.2    Ning, B.3    Hou, Y.4    Lin, Y.5    Cai, S.6    Chen, Z.7
  • 63
    • 84901691549 scopus 로고    scopus 로고
    • Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator
    • X. Qu, Y. Hou, F. Lam, D. Guo, J. Zhong, and Z. Chen, Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator, Med. Image Anal, 18 (2014), pp. 843–856.
    • (2014) Med. Image Anal , vol.18 , pp. 843-856
    • Qu, X.1    Hou, Y.2    Lam, F.3    Guo, D.4    Zhong, J.5    Chen, Z.6
  • 64
    • 79955633431 scopus 로고    scopus 로고
    • MR image reconstruction from highly undersampled k-space data by dictionary learning
    • S. Ravishankar and Y. Bresler, MR image reconstruction from highly undersampled k-space data by dictionary learning, IEEE Trans. Med. Imaging, 30 (2011), pp. 1028–1041.
    • (2011) IEEE Trans. Med. Imaging , vol.30 , pp. 1028-1041
    • Ravishankar, S.1    Bresler, Y.2
  • 65
    • 84873664211 scopus 로고    scopus 로고
    • Multiscale dictionary learning for MRI
    • S. Ravishankar and Y. Bresler, Multiscale dictionary learning for MRI, in Proc. ISMRM, 2011, p. 2830.
    • (2011) Proc. ISMRM
    • Ravishankar, S.1    Bresler, Y.2
  • 66
  • 69
    • 84884838010 scopus 로고    scopus 로고
    • Learning doubly sparse transforms for images
    • S. Ravishankar and Y. Bresler, Learning doubly sparse transforms for images, IEEE Trans. Image Process, 22 (2013), pp. 4598–4612.
    • (2013) IEEE Trans. Image Process , vol.22 , pp. 4598-4612
    • Ravishankar, S.1    Bresler, Y.2
  • 73
    • 84927591259 scopus 로고    scopus 로고
    • ℓ0 sparsifying transform learning with efficient optimal updates and convergence guarantees
    • 0 sparsifying transform learning with efficient optimal updates and convergence guarantees, IEEE Trans. Signal Process, 63 (2015), pp. 2389–2404.
    • (2015) IEEE Trans. Signal Process , vol.63 , pp. 2389-2404
    • Ravishankar, S.1    Bresler, Y.2
  • 75
    • 77949403269 scopus 로고    scopus 로고
    • Recursive least squares dictionary learning algorithm
    • K. Skretting and K. Engan, Recursive least squares dictionary learning algorithm, IEEE Trans. Signal Process, 58 (2010), pp. 2121–2130.
    • (2010) IEEE Trans. Signal Process , vol.58 , pp. 2121-2130
    • Skretting, K.1    Engan, K.2
  • 76
    • 58049195322 scopus 로고    scopus 로고
    • Highly undersampled magnetic resonance image reconstruction via homotopic l0-minimization
    • J. Trzasko and A. Manduca, Highly undersampled magnetic resonance image reconstruction via homotopic l0-minimization, IEEE Trans. Med. Imaging, 28 (2009), pp. 106–121.
    • (2009) IEEE Trans. Med. Imaging , vol.28 , pp. 106-121
    • Trzasko, J.1    Manduca, A.2
  • 77
    • 0035533631 scopus 로고    scopus 로고
    • Convergence of a block coordinate descent method for nondifferentiable minimization
    • P. Tseng, Convergence of a block coordinate descent method for nondifferentiable minimization, J. Optim. Theory Appl, 109 (2001), pp. 475–494.
    • (2001) J. Optim. Theory Appl , vol.109 , pp. 475-494
    • Tseng, P.1
  • 81
    • 84939567002 scopus 로고    scopus 로고
    • Structured overcomplete sparsifying transform learning with convergence guarantees and applications
    • B. Wen, S. Ravishankar, and Y. Bresler, Structured overcomplete sparsifying transform learning with convergence guarantees and applications, Int. J. Comput. Vis, 114 (2015), pp. 137–167.
    • (2015) Int. J. Comput. Vis , vol.114 , pp. 137-167
    • Wen, B.1    Ravishankar, S.2    Bresler, Y.3
  • 82
    • 84885030988 scopus 로고    scopus 로고
    • A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion
    • Y. Xu and W. Yin, A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion, SIAM J. Imaging Sci, 6 (2013), pp. 1758–1789.
    • (2013) SIAM J. Imaging Sci , vol.6 , pp. 1758-1789
    • Xu, Y.1    Yin, W.2
  • 83
    • 66849115117 scopus 로고    scopus 로고
    • Dictionary learning for sparse approximations with the majorization method
    • M. Yaghoobi, T. Blumensath, and M. Davies, Dictionary learning for sparse approximations with the majorization method, IEEE Trans. Signal Process, 57 (2009), pp. 2178–2191.
    • (2009) IEEE Trans. Signal Process , vol.57 , pp. 2178-2191
    • Yaghoobi, M.1    Blumensath, T.2    Davies, M.3
  • 84
    • 0036893154 scopus 로고    scopus 로고
    • A self-referencing level-set method for image reconstruction from sparse Fourier samples
    • J. C. Ye, Y. Bresler, and P. Moulin, A self-referencing level-set method for image reconstruction from sparse Fourier samples, Int. J. Comput. Vis, 50 (2002), pp. 253–270.
    • (2002) Int. J. Comput. Vis , vol.50 , pp. 253-270
    • Ye, J.C.1    Bresler, Y.2    Moulin, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.