메뉴 건너뛰기




Volumn 63, Issue 9, 2015, Pages 2389-2404

l0 Sparsifying Transform Learning With Efficient Optimal Updates and Convergence Guarantees

Author keywords

Denoising; dictionary learning; fast algorithms; image representation; non convex; sparse representation; transform model

Indexed keywords

ALGORITHMS; GLOBAL OPTIMIZATION; IMAGE PROCESSING; IMAGE RECONSTRUCTION; ITERATIVE METHODS; LEARNING ALGORITHMS; MEDICAL IMAGE PROCESSING; MEDICAL IMAGING; SIGNAL PROCESSING;

EID: 84927591259     PISSN: 1053587X     EISSN: None     Source Type: Journal    
DOI: 10.1109/TSP.2015.2405503     Document Type: Article
Times cited : (114)

References (44)
  • 1
    • 34249671661 scopus 로고    scopus 로고
    • Analysis versus synthesis in signal priors
    • M. Elad, P. Milanfar, and R. Rubinstein, "Analysis versus synthesis in signal priors," Inverse Probl., vol. 23, no. 3, pp. 947-968, 2007.
    • (2007) Inverse Probl. , vol.23 , Issue.3 , pp. 947-968
    • Elad, M.1    Milanfar, P.2    Rubinstein, R.3
  • 2
    • 59749104367 scopus 로고    scopus 로고
    • From sparse solutions of systems of equations to sparse modeling of signals and images
    • A. M. Bruckstein, D. L. Donoho, and M. Elad, "From sparse solutions of systems of equations to sparse modeling of signals and images,"SIAM Rev., vol. 51, no. 1, pp. 34-81, 2009.
    • (2009) SIAM Rev. , vol.51 , Issue.1 , pp. 34-81
    • Bruckstein, A.M.1    Donoho, D.L.2    Elad, M.3
  • 3
    • 84897584301 scopus 로고    scopus 로고
    • Analysis K-SVD: A dictionary-learning algorithm for the analysis sparse model
    • R. Rubinstein, T. Peleg, and M. Elad, "Analysis K-SVD: A dictionary-learning algorithm for the analysis sparse model," IEEE Trans. Signal Process., vol. 61, no. 3, pp. 661-677, 2013.
    • (2013) IEEE Trans. Signal Process. , vol.61 , Issue.3 , pp. 661-677
    • Rubinstein, R.1    Peleg, T.2    Elad, M.3
  • 4
    • 80054689517 scopus 로고
    • Hadamard transform image coding
    • W. K. Pratt, J. Kane, and H. C. Andrews, "Hadamard transform image coding," Proc. IEEE, vol. 57, no. 1, pp. 58-68, 1969.
    • (1969) Proc. IEEE , vol.57 , Issue.1 , pp. 58-68
    • Pratt, W.K.1    Kane, J.2    Andrews, H.C.3
  • 5
    • 84873633867 scopus 로고    scopus 로고
    • Learning sparsifying transforms
    • S. Ravishankar and Y. Bresler, "Learning sparsifying transforms,"IEEE Trans. Signal Process., vol. 61, no. 5, pp. 1072-1086, 2013.
    • (2013) IEEE Trans. Signal Process. , vol.61 , Issue.5 , pp. 1072-1086
    • Ravishankar, S.1    Bresler, Y.2
  • 6
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • B. A. Olshausen and D. J. Field, "Emergence of simple-cell receptive field properties by learning a sparse code for natural images," Nature, vol. 381, no. 6583, pp. 607-609, 1996.
    • (1996) Nature , vol.381 , Issue.6583 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2
  • 9
    • 33750383209 scopus 로고    scopus 로고
    • K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
    • M. Aharon, M. Elad, and A. Bruckstein, "K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation," IEEE Trans. Signal Process., vol. 54, no. 11, pp. 4311-4322, 2006.
    • (2006) IEEE Trans. Signal Process. , vol.54 , Issue.11 , pp. 4311-4322
    • Aharon, M.1    Elad, M.2    Bruckstein, A.3
  • 10
    • 66849115117 scopus 로고    scopus 로고
    • Dictionary learning for sparse approximations with the majorization method
    • M. Yaghoobi, T. Blumensath, and M. Davies, "Dictionary learning for sparse approximations with the majorization method," IEEE Trans. Signal Process., vol. 57, no. 6, pp. 2178-2191, 2009.
    • (2009) IEEE Trans. Signal Process. , vol.57 , Issue.6 , pp. 2178-2191
    • Yaghoobi, M.1    Blumensath, T.2    Davies, M.3
  • 11
    • 77949403269 scopus 로고    scopus 로고
    • Recursive least squares dictionary learning algorithm
    • K. Skretting and K. Engan, "Recursive least squares dictionary learning algorithm," IEEE Trans. Signal Process., vol. 58, no. 4, pp. 2121-2130, 2010.
    • (2010) IEEE Trans. Signal Process. , vol.58 , Issue.4 , pp. 2121-2130
    • Skretting, K.1    Engan, K.2
  • 12
    • 76749107542 scopus 로고    scopus 로고
    • Online learning for matrix factorization and sparse coding
    • J. Mairal, F. Bach, J. Ponce, and G. Sapiro, "Online learning for matrix factorization and sparse coding," J. Mach. Learn. Res., vol. 11, pp. 19-60, 2010.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 19-60
    • Mairal, J.1    Bach, F.2    Ponce, J.3    Sapiro, G.4
  • 13
    • 33751379736 scopus 로고    scopus 로고
    • Image denoising via sparse and redundant representations over learned dictionaries
    • M. Elad and M. Aharon, "Image denoising via sparse and redundant representations over learned dictionaries," IEEE Trans. Image Process., vol. 15, no. 12, pp. 3736-3745, 2006.
    • (2006) IEEE Trans. Image Process. , vol.15 , Issue.12 , pp. 3736-3745
    • Elad, M.1    Aharon, M.2
  • 14
    • 39149089704 scopus 로고    scopus 로고
    • Sparse representation for color image restoration
    • J. Mairal, M. Elad, and G. Sapiro, "Sparse representation for color image restoration," IEEE Trans. Image Process., vol. 17, no. 1, pp. 53-69, 2008.
    • (2008) IEEE Trans. Image Process. , vol.17 , Issue.1 , pp. 53-69
    • Mairal, J.1    Elad, M.2    Sapiro, G.3
  • 15
    • 79955633431 scopus 로고    scopus 로고
    • MR image reconstruction from highly undersampled k-space data by dictionary learning
    • S. Ravishankar and Y. Bresler, "MR image reconstruction from highly undersampled k-space data by dictionary learning," IEEE Trans. Med. Imag., vol. 30, no. 5, pp. 1028-1041, 2011.
    • (2011) IEEE Trans. Med. Imag. , vol.30 , Issue.5 , pp. 1028-1041
    • Ravishankar, S.1    Bresler, Y.2
  • 18
    • 84876249547 scopus 로고    scopus 로고
    • Constrained overcomplete analysis operator learning for cosparse signal modelling
    • M. Yaghoobi, S. Nam, R. Gribonval, and M. E. Davies, "Constrained overcomplete analysis operator learning for cosparse signal modelling,"IEEE Trans. Signal Process., vol. 61, no. 9, pp. 2341-2355, 2013.
    • (2013) IEEE Trans. Signal Process. , vol.61 , Issue.9 , pp. 2341-2355
    • Yaghoobi, M.1    Nam, S.2    Gribonval, R.3    Davies, M.E.4
  • 19
    • 84884838010 scopus 로고    scopus 로고
    • Learning doubly sparse transforms for images
    • S. Ravishankar and Y. Bresler, "Learning doubly sparse transforms for images," IEEE Trans. Image Process., vol. 22, no. 12, pp. 4598-4612, 2013.
    • (2013) IEEE Trans. Image Process. , vol.22 , Issue.12 , pp. 4598-4612
    • Ravishankar, S.1    Bresler, Y.2
  • 20
    • 0000660321 scopus 로고    scopus 로고
    • Blind source separation by sparse decomposition in a signal dictionary
    • M. Zibulevsky and B. A. Pearlmutter, "Blind source separation by sparse decomposition in a signal dictionary," Neural Computat., vol. 13, no. 4, pp. 863-882, 2001.
    • (2001) Neural Computat. , vol.13 , Issue.4 , pp. 863-882
    • Zibulevsky, M.1    Pearlmutter, B.A.2
  • 22
    • 84897391752 scopus 로고    scopus 로고
    • Model-based iterative tomographic reconstruction with adaptive sparsifying transforms
    • L. Pfister and Y. Bresler, "Model-based iterative tomographic reconstruction with adaptive sparsifying transforms," in Proc. SPIE Int. Symp. Electron. Imag.: Computat. Imag. XII, 2014, vol. 9020, pp. 90 200H-1-90 200H-11.
    • (2014) Proc. SPIE Int. Symp. Electron. Imag.: Computat. Imag. XII , vol.9020 , pp. 90200H1-90200H11
    • Pfister, L.1    Bresler, Y.2
  • 23
    • 84979320624 scopus 로고
    • On the trace of matrix products
    • L. Mirsky, "On the trace of matrix products," Math. Nachrichten, vol. 20, no. 3-6, pp. 171-174, 1959.
    • (1959) Math. Nachrichten , vol.20 , Issue.3-6 , pp. 171-174
    • Mirsky, L.1
  • 24
    • 40649095576 scopus 로고    scopus 로고
    • Basic Decompositions
    • Philadelphia, PA, USA: SIAM
    • G. W. Stewart, Matrix Algorithms: Volume 1: Basic Decompositions. Philadelphia, PA, USA: SIAM, 1998.
    • (1998) Matrix Algorithms , vol.1
    • Stewart, G.W.1
  • 25
    • 0035533631 scopus 로고    scopus 로고
    • Convergence of a block coordinate descent method for non-differentiable minimization
    • P. Tseng, "Convergence of a block coordinate descent method for non-differentiable minimization," J. Optim. Theory Appl., vol. 109, no. 3, pp. 475-494, 2001.
    • (2001) J. Optim. Theory Appl. , vol.109 , Issue.3 , pp. 475-494
    • Tseng, P.1
  • 26
    • 69949164527 scopus 로고    scopus 로고
    • Iterative hard thresholding for compressed sensing
    • T. Blumensath and M. E. Davies, "Iterative hard thresholding for compressed sensing," Applied and Computat. Harmon. Anal., vol. 27, no. 3, pp. 265-274, 2009.
    • (2009) Applied and Computat. Harmon. Anal. , vol.27 , Issue.3 , pp. 265-274
    • Blumensath, T.1    Davies, M.E.2
  • 27
    • 57349145416 scopus 로고    scopus 로고
    • Iterative thresholding for sparse approximations
    • T. Blumensath and M. E. Davies, "Iterative thresholding for sparse approximations,"J. Fourier Anal. Appl., vol. 14, no. 5-6, pp. 629-654, 2008.
    • (2008) J. Fourier Anal. Appl. , vol.14 , Issue.5-6 , pp. 629-654
    • Blumensath, T.1    Davies, M.E.2
  • 30
  • 31
    • 0346307721 scopus 로고    scopus 로고
    • A fast fixed-point algorithm for independent component analysis
    • A. Hyvärinen and E. Oja, "A fast fixed-point algorithm for independent component analysis," Neural Comput., vol. 9, no. 7, pp. 1483-1492, 1997.
    • (1997) Neural Comput. , vol.9 , Issue.7 , pp. 1483-1492
    • Hyvärinen, A.1    Oja, E.2
  • 32
    • 0029411030 scopus 로고
    • An information-maximization approach to blind separation and blind deconvolution
    • A. J. Bell and T. J. Sejnowski, "An information-maximization approach to blind separation and blind deconvolution," Neural Comput., vol. 7, no. 6, pp. 1129-1159, 1995.
    • (1995) Neural Comput. , vol.7 , Issue.6 , pp. 1129-1159
    • Bell, A.J.1    Sejnowski, T.J.2
  • 33
    • 0030832881 scopus 로고    scopus 로고
    • The "independent components of natural scenes are edge filters
    • A. J. Bell and T. J. Sejnowski, "The "independent components of natural scenes are edge filters," Vision Res., vol. 37, no. 23, pp. 3327-3338, 1997.
    • (1997) Vision Res. , vol.37 , Issue.23 , pp. 3327-3338
    • Bell, A.J.1    Sejnowski, T.J.2
  • 35
    • 0032612381 scopus 로고    scopus 로고
    • High-order contrasts for independent component analysis
    • J.-F. Cardoso, "High-order contrasts for independent component analysis,"Neural Comput., vol. 11, no. 1, pp. 157-192, 1999.
    • (1999) Neural Comput. , vol.11 , Issue.1 , pp. 157-192
    • Cardoso, J.-F.1
  • 36
    • 0344235325 scopus 로고    scopus 로고
    • Class-adapted image compression using independent component analysis
    • A. J. Ferreira and M. A. T. Figueiredo, "Class-adapted image compression using independent component analysis," in Proc. Int. Conf. Image Process., 2003, vol. 1, pp. I-625-I-628.
    • Proc. Int. Conf. Image Process., 2003 , vol.1 , pp. I625-I628
    • Ferreira, A.J.1    Figueiredo, M.A.T.2
  • 38
    • 0027814133 scopus 로고    scopus 로고
    • Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition
    • Y. Pati, R. Rezaiifar, and P. Krishnaprasad, "Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition," in Proc. Asilomar Conf. Signals, Syst. Comput., 1993, vol. 1, pp. 40-44.
    • Proc. Asilomar Conf. Signals, Syst. Comput., 1993 , vol.1 , pp. 40-44
    • Pati, Y.1    Rezaiifar, R.2    Krishnaprasad, P.3
  • 39
    • 1242294273 scopus 로고    scopus 로고
    • [Online]. Available: accessed August 2014
    • J.-F. Cardoso, Jade for Real-Valued Data, 2005 [Online]. Available: http://bsp.teithe.gr/members/downloads/Jade, accessed August 2014.
    • (2005) Jade for Real-Valued Data
    • Cardoso, J.-F.1
  • 40
    • 34547760736 scopus 로고    scopus 로고
    • Image denoising by sparse 3D transform-domain collaborative filtering
    • K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, "Image denoising by sparse 3D transform-domain collaborative filtering," IEEE Trans. Image Process., vol. 16, no. 8, pp. 2080-2095, 2007.
    • (2007) IEEE Trans. Image Process. , vol.16 , Issue.8 , pp. 2080-2095
    • Dabov, K.1    Foi, A.2    Katkovnik, V.3    Egiazarian, K.4
  • 41
    • 84939567002 scopus 로고    scopus 로고
    • Structured overcomplete sparsifying transform learning with convergence guarantees and applications
    • [Online]. Available
    • B. Wen, S. Ravishankar, and Y. Bresler, "Structured overcomplete sparsifying transform learning with convergence guarantees and applications,"Int. J. Comput. Vision pp. 1-31, 2014 [Online]. Available: http://dx.doi.org/10.1007/s11263-014-0761-1
    • (2014) Int. J. Comput. Vision , pp. 1-31
    • Wen, B.1    Ravishankar, S.2    Bresler, Y.3
  • 43
    • 0000988974 scopus 로고
    • A generalized solution of the orthogonal procrustes problem
    • P. Schönemann, "A generalized solution of the orthogonal procrustes problem," Psychometrika, vol. 31, no. 1, pp. 1-10, 1966.
    • (1966) Psychometrika , vol.31 , Issue.1 , pp. 1-10
    • Schönemann, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.