메뉴 건너뛰기




Volumn 5, Issue 4, 2015, Pages

Transition to chaos in random neuronal networks

Author keywords

[No Author keywords available]

Indexed keywords

DYNAMICS; MEAN FIELD THEORY; MEMORY ARCHITECTURE; NETWORK ARCHITECTURE; NEURONS; RATE CONSTANTS; STATISTICAL MECHANICS; TRANSFER FUNCTIONS;

EID: 84951093613     PISSN: None     EISSN: 21603308     Source Type: Journal    
DOI: 10.1103/PhysRevX.5.041030     Document Type: Article
Times cited : (225)

References (64)
  • 2
    • 0028324928 scopus 로고
    • Power Spectrum Analysis of Bursting Cells in Area MT in the Behaving Monkey
    • W. Bair, C. Koch, W. Newsome, and K. Britten, Power Spectrum Analysis of Bursting Cells in Area MT in the Behaving Monkey, J. Neurosci. 14, 2870 (1994).
    • (1994) J. Neurosci , vol.14 , pp. 2870
    • Bair, W.1    Koch, C.2    Newsome, W.3    Britten, K.4
  • 3
    • 0027498486 scopus 로고
    • The Highly Irregular Firing of Cortical Cells Is Inconsistent with Temporal Integration of Random EPSPs
    • W. R. Softky and C. Koch, The Highly Irregular Firing of Cortical Cells Is Inconsistent with Temporal Integration of Random EPSPs, J. Neurosci. 13, 334 (1993).
    • (1993) J. Neurosci , vol.13 , pp. 334
    • Softky, W.R.1    Koch, C.2
  • 4
    • 0029894898 scopus 로고    scopus 로고
    • A Comparison of Discharge Variability In Vitro and In Vivo in Cat Visual Cortex Neurons
    • G. R. Holt, W. R. Softky, C. Koch, and R. J. Douglas, A Comparison of Discharge Variability In Vitro and In Vivo in Cat Visual Cortex Neurons, J. Neurophysiol. 75, 1806 (1996).
    • (1996) J. Neurophysiol , vol.75 , pp. 1806
    • Holt, G.R.1    Softky, W.R.2    Koch, C.3    Douglas, R.J.4
  • 5
    • 1942489861 scopus 로고    scopus 로고
    • Information Tuning of Populations of Neurons in Primary Visual Cortex
    • K. Kang, R. M. Shapely, and H. Sompolinsky, Information Tuning of Populations of Neurons in Primary Visual Cortex, J. Neurosci. 24, 3726 (2004).
    • (2004) J. Neurosci , vol.24 , pp. 3726
    • Kang, K.1    Shapely, R.M.2    Sompolinsky, H.3
  • 7
    • 0029835892 scopus 로고    scopus 로고
    • Chaos in Neuronal Networks with Balanced Excitatory and Inhibitory Activity
    • C. van Vreeswijk and H. Sompolinsky, Chaos in Neuronal Networks with Balanced Excitatory and Inhibitory Activity, Science 274, 1724 (1996).
    • (1996) Science , vol.274 , pp. 1724
    • Van Vreeswijk, C.1    Sompolinsky, H.2
  • 8
    • 0032528729 scopus 로고    scopus 로고
    • Chaotic Balanced State in a Model of Cortical Circuits
    • C. van Vreeswijk and H. Sompolinsky, Chaotic Balanced State in a Model of Cortical Circuits, Neural Comput. 10, 1321 (1998).
    • (1998) Neural Comput , vol.10 , pp. 1321
    • Van Vreeswijk, C.1    Sompolinsky, H.2
  • 10
    • 18544411949 scopus 로고    scopus 로고
    • Phase Diagrams of Sparsely Connected Networks of Excitatory and Inhibitory Spiking Neurons
    • N. Brunel, Phase Diagrams of Sparsely Connected Networks of Excitatory and Inhibitory Spiking Neurons, Neurocomputing;Variable Star Bulletin 32-33, 307 (2000).
    • (2000) Neurocomputing;Variable Star Bulletin , vol.307 , pp. 32-33
    • Brunel, N.1
  • 11
    • 77953355233 scopus 로고    scopus 로고
    • Connectivity, Dynamics, and Memory in Reservoir Computing with Binary and Analog Neurons
    • L. Busing, B. Schrauwen, and R. Legenstein, Connectivity, Dynamics, and Memory in Reservoir Computing with Binary and Analog Neurons, Neural Comput. 22, 1272 (2010).
    • (2010) Neural Comput , vol.22 , pp. 1272
    • Busing, L.1    Schrauwen, B.2    Legenstein, R.3
  • 12
    • 68649088777 scopus 로고    scopus 로고
    • Reservoir Computing Approaches to Recurrent Neural Network Training
    • M. Lukoševicius and H. Jaeger, Reservoir Computing Approaches to Recurrent Neural Network Training, Comput. Sci. Rev. 3, 127 (2009).
    • (2009) Comput. Sci. Rev , vol.3 , pp. 127
    • Lukoševicius, M.1    Jaeger, H.2
  • 13
    • 68949147577 scopus 로고    scopus 로고
    • Generating Coherent Patterns of Activity from Chaotic Neural Networks
    • D. Sussillo and L. F. Abbott, Generating Coherent Patterns of Activity from Chaotic Neural Networks, Neuron 63, 544 (2009).
    • (2009) Neuron , vol.63 , pp. 544
    • Sussillo, D.1    Abbott, L.F.2
  • 14
    • 84875920967 scopus 로고    scopus 로고
    • From Fixed Points to Chaos: Three Models of Delayed Discrimination
    • O. Barak, D. Sussillo, R. Romo, M. Tsodyks, and L. F. Abbott, From Fixed Points to Chaos: Three Models of Delayed Discrimination, Prog. Neurobiol. 103, 214 (2013).
    • (2013) Prog. Neurobiol , vol.103 , pp. 214
    • Barak, O.1    Sussillo, D.2    Romo, R.3    Tsodyks, M.4    Abbott, L.F.5
  • 15
    • 33846543881 scopus 로고    scopus 로고
    • Edge of Chaos and Prediction of Computational Performance for Neural Circuit Models
    • R. Legenstein andW. Maass, Edge of Chaos and Prediction of Computational Performance for Neural Circuit Models, Neural Netw. 20, 323 (2007).
    • (2007) Neural Netw , vol.20 , pp. 323
    • Legenstein, R.1    Maass, W.2
  • 16
    • 0036834701 scopus 로고    scopus 로고
    • Real-Time Computing without Stable States: A New Framework for Neural Computation Based on Perturbations
    • W. Maass, T. Natschläger, and H. Markram, Real-Time Computing without Stable States: A New Framework for Neural Computation Based on Perturbations, Neural Comput. 14, 2531 (2002).
    • (2002) Neural Comput , vol.14 , pp. 2531
    • Maass, W.1    Natschläger, T.2    Markram, H.3
  • 17
    • 1842421269 scopus 로고    scopus 로고
    • Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication
    • H. Jaeger and H. Haas, Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication, Science 304, 78 (2004).
    • (2004) Science , vol.304 , pp. 78
    • Jaeger, H.1    Haas, H.2
  • 18
    • 81555214501 scopus 로고    scopus 로고
    • Beyond the Edge of Chaos: Amplification and Temporal Integration by Recurrent Networks in the Chaotic Regime
    • T. Toyoizumi and L. F. Abbott, Beyond the Edge of Chaos: Amplification and Temporal Integration by Recurrent Networks in the Chaotic Regime, Phys. Rev. E 84, 051908 (2011).
    • (2011) Phys. Rev. E , vol.84
    • Toyoizumi, T.1    Abbott, L.F.2
  • 19
    • 2942552269 scopus 로고    scopus 로고
    • Real-Time Computation at the Edge of Chaos in Recurrent Neural Networks
    • N. Bertschinger and T. Natschlager, Real-Time Computation at the Edge of Chaos in Recurrent Neural Networks, Neural Comput. 16, 1413 (2004).
    • (2004) Neural Comput , vol.16 , pp. 1413
    • Bertschinger, N.1    Natschlager, T.2
  • 21
    • 84890543083 scopus 로고    scopus 로고
    • Speech Recognition with Deep Recurrent Neural Networks, in ICASSP 2013-IEEE International Conference on Acoustics
    • A. Graves, A.-R. Mohamed, and G. Hinton, Speech Recognition with Deep Recurrent Neural Networks, in ICASSP 2013-IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (IEEE, 2013) pp. 6645-6649.
    • Speech and Signal Processing (ICASSP) (IEEE, 2013) , pp. 6645-6649
    • Graves, A.1    Mohamed, A.-R.2    Hinton, G.3
  • 24
    • 0034006515 scopus 로고    scopus 로고
    • Dynamics of Sparsely Connected Networks of Excitatory and Inhibitory Spiking Neurons
    • N. Brunel, Dynamics of Sparsely Connected Networks of Excitatory and Inhibitory Spiking Neurons, J. Comput. Neurosci. 8, 183 (2000).
    • (2000) J. Comput. Neurosci , vol.8 , pp. 183
    • Brunel, N.1
  • 25
    • 84897033914 scopus 로고    scopus 로고
    • Two Types of Asynchronous Activity in Networks of Excitatory and Inhibitory Spiking Neurons
    • S. Ostojic, Two Types of Asynchronous Activity in Networks of Excitatory and Inhibitory Spiking Neurons, Nat. Neurosci. 17, 594 (2014).
    • (2014) Nat. Neurosci , vol.17 , pp. 594
    • Ostojic, S.1
  • 26
    • 84896722208 scopus 로고    scopus 로고
    • The Correlation Structure of Local Neuronal Networks Intrinsically Results from Recurrent Dynamics
    • M. Helias, T. Tetzlaff, and M. Diesmann, The Correlation Structure of Local Neuronal Networks Intrinsically Results from Recurrent Dynamics, PLoS Comput. Biol. 10, e1003428 (2014).
    • (2014) PLoS Comput. Biol , vol.10
    • Helias, M.1    Tetzlaff, T.2    Diesmann, M.3
  • 27
    • 0004215583 scopus 로고
    • Cambridge University Press, Cambridge, England
    • K. H. Fischer and J. A. Hertz, Spin Glasses (Cambridge University Press, Cambridge, England, 1991).
    • (1991) Spin Glasses
    • Fischer, K.H.1    Hertz, J.A.2
  • 29
    • 77956963311 scopus 로고    scopus 로고
    • Irregular Activity in Large Networks of Neurons, in Methods and Models in Neurophysics
    • edited by C. Chow, B. Gutkin, D. Hansel, C. Meunier, and J. Dalibard (Elsevier, Amsterdam, 2005), Chap. 9
    • C. van Vreeswijk and H. Sompolinsky, Irregular Activity in Large Networks of Neurons, in Methods and Models in Neurophysics, Volume LXXX: Lecture Notes of the Les Houches Summer School, edited by C. Chow, B. Gutkin, D. Hansel, C. Meunier, and J. Dalibard (Elsevier, Amsterdam, 2005), Chap. 9, pp. 341-402.
    • Lecture Notes of the Les Houches Summer School , vol.80 , pp. 341-402
    • Van Vreeswijk, C.1    Sompolinsky, H.2
  • 30
    • 84884129239 scopus 로고    scopus 로고
    • Large Deviations, Dynamics and Phase Transitions in Large Stochastic and Disordered Neural Networks
    • T. Cabana and J. Touboul, Large Deviations, Dynamics and Phase Transitions in Large Stochastic and Disordered Neural Networks, J. Stat. Phys. 153, 211 (2013).
    • (2013) J. Stat. Phys , vol.153 , pp. 211
    • Cabana, T.1    Touboul, J.2
  • 32
    • 26344475929 scopus 로고
    • Relaxational Dynamics of the Edwards-Anderson Model and the Mean-Field Theory of Spin-Glasses
    • H. Sompolinsky and A. Zippelius, Relaxational Dynamics of the Edwards-Anderson Model and the Mean-Field Theory of Spin-Glasses, Phys. Rev. B 25, 6860 (1982).
    • (1982) Phys. Rev. B , vol.25 , pp. 6860
    • Sompolinsky, H.1    Zippelius, A.2
  • 33
    • 77649304853 scopus 로고    scopus 로고
    • Systematic Fluctuation Expansion for Neural Network Activity Equations
    • M. A. Buice, J. D. Cowan, and C. C. Chow, Systematic Fluctuation Expansion for Neural Network Activity Equations, Neural Comput. 22, 377 (2010).
    • (2010) Neural Comput , vol.22 , pp. 377
    • Buice, M.A.1    Cowan, J.D.2    Chow, C.C.3
  • 34
    • 39449100310 scopus 로고    scopus 로고
    • Inhibition, Spike Threshold, and Stimulus Selectivity in Primary Visual Cortex
    • N. J. Priebe and D. Ferster, Inhibition, Spike Threshold, and Stimulus Selectivity in Primary Visual Cortex, Neuron 57, 482 (2008).
    • (2008) Neuron , vol.57 , pp. 482
    • Priebe, N.J.1    Ferster, D.2
  • 35
    • 0037096277 scopus 로고    scopus 로고
    • How Noise Contributes to Contrast Invariance of Orientation Tuning in Cat Visual Cortex
    • D. Hansel and C. Van Vreeswijk, How Noise Contributes to Contrast Invariance of Orientation Tuning in Cat Visual Cortex, J. Neurosci. 22, 51185 (2002).
    • (2002) J. Neurosci , vol.22
    • Hansel, D.1    Van Vreeswijk, C.2
  • 37
    • 84924064398 scopus 로고    scopus 로고
    • Transition to Chaos in Random Networks with Cell-Type-Specific Connectivity
    • J. Aljadeff, M. Stern, and T. Sharpee, Transition to Chaos in Random Networks with Cell-Type-Specific Connectivity, Phys. Rev. Lett. 114, 088101 (2015).
    • (2015) Phys. Rev. Lett , vol.114
    • Aljadeff, J.1    Stern, M.2    Sharpee, T.3
  • 38
    • 84875033427 scopus 로고    scopus 로고
    • Topological and Dynamical Complexity of Random Neural Networks
    • G. Wainrib and J. Touboul, Topological and Dynamical Complexity of Random Neural Networks, Phys. Rev. Lett. 110, 118101 (2013).
    • (2013) Phys. Rev. Lett , vol.110
    • Wainrib, G.1    Touboul, J.2
  • 39
    • 0029983705 scopus 로고    scopus 로고
    • Chaos and Synchrony in a Model of a Hypercolumn in Visual Cortex
    • D. Hansel and H. Sompolinsky, Chaos and Synchrony in a Model of a Hypercolumn in Visual Cortex, J. Comput. Neurosci. 3, 7 (1996).
    • (1996) J. Comput. Neurosci , vol.3 , pp. 7
    • Hansel, D.1    Sompolinsky, H.2
  • 40
    • 0035798093 scopus 로고    scopus 로고
    • The Neurobiology of Slow Synaptic Transmission
    • P. Greengard, The Neurobiology of Slow Synaptic Transmission, Science 294, 1024 (2001).
    • (2001) Science , vol.294 , pp. 1024
    • Greengard, P.1
  • 41
    • 0037877795 scopus 로고
    • Theory of Correlations in Stochastic Neural Networks
    • I. Ginzburg and H. Sompolinsky, Theory of Correlations in Stochastic Neural Networks, Phys. Rev. E 50, 3171 (1994).
    • (1994) Phys. Rev. E , vol.50 , pp. 3171
    • Ginzburg, I.1    Sompolinsky, H.2
  • 42
    • 84921890422 scopus 로고    scopus 로고
    • Properties of Networks with Partially Structured and Partially Random Connectivity
    • Yashar Ahmadian, Francesco Fumarola, and Kenneth D. Miller, Properties of Networks with Partially Structured and Partially Random Connectivity, Phys. Rev. E 91, 012820 (2015).
    • (2015) Phys. Rev. E , vol.91
    • Ahmadian, Y.1    Fumarola, F.2    Miller, K.D.3
  • 43
    • 84868159004 scopus 로고    scopus 로고
    • Slow Dynamics and High Variability in Balanced Cortical Networks with Clustered Connections
    • A. Litwin-Kumar and B. Doiron, Slow Dynamics and High Variability in Balanced Cortical Networks with Clustered Connections, Nat. Neurosci. 15, 1498 (2012).
    • (2012) Nat. Neurosci , vol.15 , pp. 1498
    • Litwin-Kumar, A.1    Doiron, B.2
  • 45
    • 0032146788 scopus 로고    scopus 로고
    • Contrast-Invariant Orientation Tuning in Cat Visual Cortex: Thalamocortical Input Tuning and Correlation-Based Intracortical Connectivity
    • T.W. Troyer, A. E. Krukowski, N. J. Priebe, and K. D. Miller, Contrast-Invariant Orientation Tuning in Cat Visual Cortex: Thalamocortical Input Tuning and Correlation-Based Intracortical Connectivity, J. Neurosci. 18, 5908 (1998).
    • (1998) J. Neurosci , vol.18 , pp. 5908
    • Troyer, T.W.1    Krukowski, A.E.2    Priebe, N.J.3    Miller, K.D.4
  • 46
    • 0026904517 scopus 로고
    • Normalization of Cell Responses in Cat Striate Cortex
    • D. J. Heeger, Normalization of Cell Responses in Cat Striate Cortex, Visual neuroscience 9, 181 (1992).
    • (1992) Visual neuroscience , vol.9 , pp. 181
    • Heeger, D.J.1
  • 48
    • 0029410666 scopus 로고
    • Visual Cortex Neurons in Monkey and Cat: Effect of Contrast on the Spatial and Temporal Phase Transfer Functions
    • D. G. Albrecht, Visual Cortex Neurons in Monkey and Cat: Effect of Contrast on the Spatial and Temporal Phase Transfer Functions, Visual neuroscience 12, 1191 (1995).
    • (1995) Visual neuroscience , vol.12 , pp. 1191
    • Albrecht, D.G.1
  • 52
    • 0032186220 scopus 로고    scopus 로고
    • Linearization of f-I Curves by Adaptation
    • B. Ermentrout, Linearization of f-I Curves by Adaptation, Neural Comput. 10, 1721 (1998).
    • (1998) Neural Comput , vol.10 , pp. 1721
    • Ermentrout, B.1
  • 53
    • 0041324844 scopus 로고    scopus 로고
    • Rate Models for Conductance-Based Cortical Neuronal Networks
    • O. Shriki, D. Hansel, and H. Sompolinsky, Rate Models for Conductance-Based Cortical Neuronal Networks, Neural Comput. 15, 1809 (2003).
    • (2003) Neural Comput , vol.15 , pp. 1809
    • Shriki, O.1    Hansel, D.2    Sompolinsky, H.3
  • 54
    • 77954485043 scopus 로고    scopus 로고
    • Stimulus-Dependent Suppression of Chaos in Recurrent Neural Networks
    • K. Rajan, L. F. Abbott, and H. Sompolinsky, Stimulus-Dependent Suppression of Chaos in Recurrent Neural Networks, Phys. Rev. E 82, 011903 (2010).
    • (2010) Phys. Rev. E , vol.82
    • Rajan, K.1    Abbott, L.F.2    Sompolinsky, H.3
  • 55
    • 0000650934 scopus 로고
    • Reduction of Conductance-Based Models with Slow Synapses to Neural Nets
    • B. Ermentrout, Reduction of Conductance-Based Models with Slow Synapses to Neural Nets, Neural Comput. 6, 679 (1994).
    • (1994) Neural Comput , vol.6 , pp. 679
    • Ermentrout, B.1
  • 56
    • 0036482863 scopus 로고    scopus 로고
    • The Time-Rescaling Theorem and Its Application to Neural Spike Train Data Analysis
    • E. Brown, R. Barbieri, V. Ventura, R. Kass, and L. Frank, The Time-Rescaling Theorem and Its Application to Neural Spike Train Data Analysis, Neural Comput. 14, 325 (2002).
    • (2002) Neural Comput , vol.14 , pp. 325
    • Brown, E.1    Barbieri, R.2    Ventura, V.3    Kass, R.4    Frank, L.5
  • 57
    • 64349098706 scopus 로고    scopus 로고
    • Very Long Transients, Irregular Firing, and Chaotic Dynamics in Networks of Randomly Connected Inhibitory Integrate-and-Fire Neurons
    • R. Zillmer, N. Brunel, and D. Hansel, Very Long Transients, Irregular Firing, and Chaotic Dynamics in Networks of Randomly Connected Inhibitory Integrate-and-Fire Neurons, Phys. Rev. E 79, 031909 (2009).
    • (2009) Phys. Rev. E , vol.79
    • Zillmer, R.1    Brunel, N.2    Hansel, D.3
  • 58
    • 38849132055 scopus 로고    scopus 로고
    • Stable Irregular Dynamics in Complex Neural Networks
    • S. Jahnke, R.-M. Memmesheimer, and M. Timme, Stable Irregular Dynamics in Complex Neural Networks, Phys. Rev. Lett. 100, 048102 (2008).
    • (2008) Phys. Rev. Lett , vol.100
    • Jahnke, S.1    Memmesheimer, R.-M.2    Timme, M.3
  • 60
    • 84951155088 scopus 로고    scopus 로고
    • Single Cell Dynamics Determine Strength of Chaos in Collective Network Dynamics
    • M. Monteforte and F. Wolf, Single Cell Dynamics Determine Strength of Chaos in Collective Network Dynamics, BMC Neurosci. 12, P225 (2011).
    • (2011) BMC Neurosci , vol.12 , pp. P225
    • Monteforte, M.1    Wolf, F.2
  • 61
    • 79551566720 scopus 로고    scopus 로고
    • From Spiking Neuron Models to Linear-Nonlinear Models
    • S. Ostojic and N. Brunel, From Spiking Neuron Models to Linear-Nonlinear Models, PLoS Comput. Biol. 7, e1001056 (2011).
    • (2011) PLoS Comput. Biol , vol.7
    • Ostojic, S.1    Brunel, N.2
  • 62
    • 84887310609 scopus 로고    scopus 로고
    • A Complex-Valued Firing-Rate Model that Approximates the Dynamics of Spiking Networks
    • E. S. Schaffer, S. Ostojic, and L. F. Abbott, A Complex-Valued Firing-Rate Model that Approximates the Dynamics of Spiking Networks, PLoS Comput. Biol. 9, e1003301 (2013).
    • (2013) PLoS Comput. Biol , vol.9
    • Schaffer, E.S.1    Ostojic, S.2    Abbott, L.F.3
  • 63
    • 84887390404 scopus 로고    scopus 로고
    • Context-Dependent Computation by Recurrent Dynamics in Prefrontal Cortex
    • London
    • V. Mante, D. Sussillo, K. V. Shenoy, and W. T. Newsome, Context-Dependent Computation by Recurrent Dynamics in Prefrontal Cortex, Nature (London) 503, 78 (2013).
    • (2013) Nature , vol.503 , pp. 78
    • Mante, V.1    Sussillo, D.2    Shenoy, K.V.3    Newsome, W.T.4
  • 64
    • 84938674948 scopus 로고    scopus 로고
    • Asynchronous Rate Chaos in Spiking Neuronal Circuits
    • O. Harish and D. Hansel, Asynchronous Rate Chaos in Spiking Neuronal Circuits, PLoS Comput. Biol. 11, e1004266 (2015).
    • (2015) PLoS Comput. Biol , vol.11
    • Harish, O.1    Hansel, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.