메뉴 건너뛰기




Volumn 22, Issue 2, 2010, Pages 377-426

Systematic fluctuation expansion for neural network activity equations

Author keywords

[No Author keywords available]

Indexed keywords

ACTION POTENTIAL; ALGORITHM; ANIMAL; ARTIFICIAL INTELLIGENCE; ARTIFICIAL NEURAL NETWORK; BRAIN; HUMAN; LETTER; MATHEMATICAL COMPUTING; MATHEMATICAL PHENOMENA; NERVE CELL; NERVE CELL NETWORK; PHYSIOLOGY;

EID: 77649304853     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/neco.2009.02-09-960     Document Type: Letter
Times cited : (134)

References (60)
  • 1
    • 22244458151 scopus 로고
    • Asynchronous states in networks of pulsecoupled oscillators
    • Abbott, L., & Van Vreeswijk, C. (1993). Asynchronous states in networks of pulsecoupled oscillators. Phys. Rev. E, 48(2), 1483-1490.
    • (1993) Phys. Rev. E , vol.48 , Issue.2 , pp. 1483-1490
    • Abbott, L.1    Van Vreeswijk, C.2
  • 2
    • 0016640311 scopus 로고
    • Homogeneous nets of neuron-like elements
    • Amari, S. (1975). Homogeneous nets of neuron-like elements. Biological Cybernetics, 17, 211-220.
    • (1975) Biological Cybernetics , vol.17 , pp. 211-220
    • Amari, S.1
  • 3
    • 0017713690 scopus 로고
    • Dynamics of pattern formation in lateral-inhibition type neural fields
    • Amari, S. (1977). Dynamics of pattern formation in lateral-inhibition type neural fields. Biological Cybernetics, 27, 77-87.
    • (1977) Biological Cybernetics , vol.27 , pp. 77-87
    • Amari, S.1
  • 4
    • 0030947941 scopus 로고    scopus 로고
    • Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex
    • Amit, D., & Brunel, N. (1997a). Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. Cereb. Cortex, 7(3), 237-252.
    • (1997) Cereb. Cortex , vol.7 , Issue.3 , pp. 237-252
    • Amit, D.1    Brunel, N.2
  • 5
    • 0000438415 scopus 로고    scopus 로고
    • Dynamics of a recurrent network of spiking neurons before and following learning
    • Amit, D. J., & Brunel, N. (1997b). Dynamics of a recurrent network of spiking neurons before and following learning. Network: Computation in Neural Systems, 8(4), 373-404.
    • (1997) Network: Computation in Neural Systems , vol.8 , Issue.4 , pp. 373-404
    • Amit, D.J.1    Brunel, N.2
  • 6
  • 7
    • 37549027700 scopus 로고    scopus 로고
    • The criticality hypothesis: How local cortical networks might optimize information processing
    • Beggs, J. M. (2008). The criticality hypothesis: How local cortical networks might optimize information processing. Philosophical Transactions of the Royal Society A, 366(1864), 329-343.
    • (2008) Philosophical Transactions of the Royal Society A , vol.366 , Issue.1864 , pp. 329-343
    • Beggs, J.M.1
  • 8
    • 0348010295 scopus 로고    scopus 로고
    • Neuronal avalanches in neocortical circuits
    • Beggs, J. M. & Plenz, D. (2003). Neuronal avalanches in neocortical circuits. Journal of Neuroscience, 23(35), 11167-11177.
    • (2003) Journal of Neuroscience , vol.23 , Issue.35 , pp. 11167-11177
    • Beggs, J.M.1    Plenz, D.2
  • 9
    • 34547686362 scopus 로고    scopus 로고
    • Olfactory bulb gamma oscillations are enhanced with task demands
    • Beshel, J., Kopell, N., and Kay, L. (2007). Olfactory bulb gamma oscillations are enhanced with task demands. Journal of Neuroscience, 27(31), 8358-8365.
    • (2007) Journal of Neuroscience , vol.27 , Issue.31 , pp. 8358-8365
    • Beshel, J.1    Kopell, N.2    Kay, L.3
  • 11
    • 0034006515 scopus 로고    scopus 로고
    • Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons
    • (6 May 2000)
    • Brunel, N. (6 May 2000). Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. Journal of Computational Neuroscience, 8, 183-208.
    • Journal of Computational Neuroscience , vol.8 , pp. 183-208
    • Brunel, N.1
  • 12
    • 0033210816 scopus 로고    scopus 로고
    • Fast global oscillations in networks of integrate-andfire neurons with low firing rates
    • Brunel, N., & Hakim, V. (1999). Fast global oscillations in networks of integrate-andfire neurons with low firing rates. Neural Computation, 11(7), 1621-1671.
    • (1999) Neural Computation , vol.11 , Issue.7 , pp. 1621-1671
    • Brunel, N.1    Hakim, V.2
  • 13
    • 33646397012 scopus 로고    scopus 로고
    • How noise affects the synchronization properties of recurrent networks of inhibitory neurons
    • Brunel, N., & Hansel, D. (2006). How noise affects the synchronization properties of recurrent networks of inhibitory neurons. Neural Comput., 18(5), 1066- 1110.
    • (2006) Neural Comput. , vol.18 , Issue.5 , pp. 1066-1110
    • Brunel, N.1    Hansel, D.2
  • 14
  • 15
    • 34547276719 scopus 로고    scopus 로고
    • Field theoretic approach to fluctuation effects for neural networks
    • Buice, M. A., & Cowan, J. D. (2007). Field theoretic approach to fluctuation effects for neural networks. Physical Review E, 75, 051919.
    • (2007) Physical Review E , vol.75 , pp. 051919
    • Buice, M.A.1    Cowan, J.D.2
  • 16
    • 2442679125 scopus 로고    scopus 로고
    • An effective kinetic representation of fluctuation-driven neuronal networks with application to simple and complex cells in visual cortex
    • Cai, D., Tao, L., Shelley, M., & McLaughlin, D. W. (2004). An effective kinetic representation of fluctuation-driven neuronal networks with application to simple and complex cells in visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 101(20), 7757-7762.
    • (2004) Proceedings of the National Academy of Sciences of the United States of America , vol.101 , Issue.20 , pp. 7757-7762
    • Cai, D.1    Tao, L.2    Shelley, M.3    McLaughlin, D.W.4
  • 17
    • 0020970741 scopus 로고
    • Absolute stability and global pattern formation and parallel storage by competitive neural networks
    • Cohen, M., & Grossberg, S. (1983). Absolute stability and global pattern formation and parallel storage by competitive neural networks. IEEE Transactions on Systems, Man, and Cybernetics, 13, 815-826.
    • (1983) IEEE Transactions on Systems, Man, and Cybernetics , vol.13 , pp. 815-826
    • Cohen, M.1    Grossberg, S.2
  • 18
    • 23944441267 scopus 로고    scopus 로고
    • Waves, bumps, & patterns in neural field theories
    • Coombes, S. (2005). Waves, bumps, & patterns in neural field theories. Biological Cybernetics, 93, 91-108.
    • (2005) Biological Cybernetics , vol.93 , pp. 91-108
    • Coombes, S.1
  • 19
    • 0001187536 scopus 로고
    • Effective action for composite operators
    • Cornwall, J. M., Jackiw, R., & Tomboulis, E. (1974). Effective action for composite operators. Physical Review D, 10(8), 2428-2445.
    • (1974) Physical Review D , vol.10 , Issue.8 , pp. 2428-2445
    • Cornwall, J.M.1    Jackiw, R.2    Tomboulis, E.3
  • 20
    • 0038927307 scopus 로고
    • Stochastic neurodynamics
    • In D. S. Touretzky, R. P. Lippman, & J. E. Moody (Eds.), 3. San Francisco: Morgan Kaufmann
    • Cowan, J. D. (1991). Stochastic neurodynamics. In D. S. Touretzky, R. P. Lippman, & J. E. Moody (Eds.), Advances in neural information processing systems, 3. San Francisco: Morgan Kaufmann.
    • (1991) Advances in neural information processing systems
    • Cowan, J.D.1
  • 21
    • 36149049574 scopus 로고
    • Second quantization representation for classical many-particle system
    • Doi, M. (1976a). Second quantization representation for classical many-particle system. Journal of Physics A: Mathematical and General, 9(9), 1465-1477.
    • (1976) Journal of Physics A: Mathematical and General , vol.9 , Issue.9 , pp. 1465-1477
    • Doi, M.1
  • 22
    • 0001199360 scopus 로고
    • Stochastic theory of diffusion controlled reaction
    • Doi, M. (1976b). Stochastic theory of diffusion controlled reaction. Journal of Physics A: Mathematical and General, 9(9), 1479-1495.
    • (1976) Journal of Physics A: Mathematical and General , vol.9 , Issue.9 , pp. 1479-1495
    • Doi, M.1
  • 23
    • 59149102161 scopus 로고    scopus 로고
    • A master equation formalism for macroscopic modeling of asynchronous irregular activity states
    • El Boustani, S., & Destexhe, A. (2009). A master equation formalism for macroscopic modeling of asynchronous irregular activity states. Neural Computation, 21, 46- 100.
    • (2009) Neural Computation , vol.21 , pp. 46-100
    • El Boustani, S.1    Destexhe, A.2
  • 24
    • 0001104658 scopus 로고    scopus 로고
    • Neural networks as spatio-temporal pattern-forming systems
    • Ermentrout, B. (1998). Neural networks as spatio-temporal pattern-forming systems. Reports on Progress in Physics, 61(4), 353-430.
    • (1998) Reports on Progress in Physics , vol.61 , Issue.4 , pp. 353-430
    • Ermentrout, B.1
  • 25
    • 0018700147 scopus 로고
    • A mathematical theory of visual hallucination patterns
    • Ermentrout, G. B., & Cowan, J. D. (1979). A mathematical theory of visual hallucination patterns. Biological Cybernetics, 34, 137-150.
    • (1979) Biological Cybernetics , vol.34 , pp. 137-150
    • Ermentrout, G.B.1    Cowan, J.D.2
  • 26
    • 0036716145 scopus 로고    scopus 로고
    • Dynamics of the firing probability of noisy integrate-and-fire neurons
    • Fourcaud, N., & Brunel, N. (2002). Dynamics of the firing probability of noisy integrate-and-fire neurons. Neural Comput., 14(9), 2057-2110.
    • (2002) Neural Comput. , vol.14 , Issue.9 , pp. 2057-2110
    • Fourcaud, N.1    Brunel, N.2
  • 27
    • 0033110047 scopus 로고    scopus 로고
    • Collective behavior of networks with linear (VLSI) integrate-and-fire neurons
    • Fusi, S., & Mattia, M. (1999). Collective behavior of networks with linear (VLSI) integrate-and-fire neurons. Neural Computation, 11(3), 633-652.
    • (1999) Neural Computation , vol.11 , Issue.3 , pp. 633-652
    • Fusi, S.1    Mattia, M.2
  • 28
    • 0000788367 scopus 로고
    • Time structure of the activity in neural network models
    • Gerstner, W. (1995). Time structure of the activity in neural network models. Phys. Rev. E, 51(1), 738-758.
    • (1995) Phys. Rev. E , vol.51 , Issue.1 , pp. 738-758
    • Gerstner, W.1
  • 29
    • 0033630628 scopus 로고    scopus 로고
    • Population dynamics of spiking neurons: Fast transients, asynchronous states, and locking
    • Gerstner,W. (2000). Population dynamics of spiking neurons: Fast transients, asynchronous states, and locking. Neural Computation, 12, 43-89.
    • (2000) Neural Computation , vol.12 , pp. 43-89
    • Gerstner, W.1
  • 31
    • 0037877795 scopus 로고
    • Theory of correlations in stochastic neural networks
    • Ginzburg, I., & Sompolinsky, H. (1994). Theory of correlations in stochastic neural networks. Physical Review E, 50(4), 3171-3191.
    • (1994) Physical Review E , vol.50 , Issue.4 , pp. 3171-3191
    • Ginzburg, I.1    Sompolinsky, H.2
  • 32
    • 0034184781 scopus 로고    scopus 로고
    • The number of synaptic inputs and the synchrony of large, sparse neuronal networks
    • Golomb, D., & Hansel, D. (2000). The number of synaptic inputs and the synchrony of large, sparse neuronal networks. Neural Comput., 12(5), 1095-1139.
    • (2000) Neural Comput. , vol.12 , Issue.5 , pp. 1095-1139
    • Golomb, D.1    Hansel, D.2
  • 35
    • 0020118274 scopus 로고
    • Neural networks and physical systems with emergent collective computational abilities
    • Hopfield, J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences, 79, 2445-2558.
    • (1982) Proceedings of the National Academy of Sciences , vol.79 , pp. 2445-2558
    • Hopfield, J.1
  • 36
    • 0004469897 scopus 로고
    • Neurons with graded response have collective computational properties like those of two state neurons
    • Hopfield, J. (1984). Neurons with graded response have collective computational properties like those of two state neurons. Proceedings of the National Academy of Sciences, 81, 3088-3092.
    • (1984) Proceedings of the National Academy of Sciences , vol.81 , pp. 3088-3092
    • Hopfield, J.1
  • 38
    • 12344300320 scopus 로고    scopus 로고
    • The field theory approach to percolation processes
    • Janssen, H.-K., & Tauber, U. C. (2005). The field theory approach to percolation processes. Annals of Physics, 315(1), 147-192.
    • (2005) Annals of Physics , vol.315 , Issue.1 , pp. 147-192
    • Janssen, H.-K.1    Tauber, U.C.2
  • 39
    • 0035403248 scopus 로고    scopus 로고
    • Stationary bumps in networks of spiking neurons
    • Laing, C., & Chow, C. (2001). Stationary bumps in networks of spiking neurons. Neural Computation, 13(7), 1473-1494.
    • (2001) Neural Computation , vol.13 , Issue.7 , pp. 1473-1494
    • Laing, C.1    Chow, C.2
  • 40
    • 34547676425 scopus 로고    scopus 로고
    • Dynamics of interacting particle systems: Stochastic process and field theory
    • Lefévre, A., & Biroli, G. (2007). Dynamics of interacting particle systems: Stochastic process and field theory. J. Stat. Mech., 2007(7), P07024-P07024.
    • (2007) J. Stat. Mech. , vol.2007 , Issue.7
    • Lefévre, A.1    Biroli, G.2
  • 41
    • 34548013119 scopus 로고    scopus 로고
    • Critical analysis of dimension reduction by amoment closure method in a population density approach to neural network modeling
    • Ly, C., & Tranchina, D. (2007). Critical analysis of dimension reduction by amoment closure method in a population density approach to neural network modeling. Neural Computation, 19(8), 2032-2092.
    • (2007) Neural Computation , vol.19 , Issue.8 , pp. 2032-2092
    • Ly, C.1    Tranchina, D.2
  • 42
    • 0000840262 scopus 로고
    • Statistical dynamics of classical systems
    • Martin, P. C., Siggia, E. D., & Rose, H. A. (1973). Statistical dynamics of classical systems. Physical Review A, 8(1), 423-437.
    • (1973) Physical Review A , vol.8 , Issue.1 , pp. 423-437
    • Martin, P.C.1    Siggia, E.D.2    Rose, H.A.3
  • 43
    • 85036133906 scopus 로고    scopus 로고
    • Population dynamics of interacting spiking neurons
    • Mattia, M. & Del Giudice, P. (2002). Population dynamics of interacting spiking neurons. Phys. Rev. E, 66(5), 051917.
    • (2002) Phys. Rev. E , vol.66 , Issue.5 , pp. 051917
    • Mattia, M.1    Del Giudice, P.2
  • 45
    • 0034076273 scopus 로고    scopus 로고
    • A population density approach that facilitates large-scale modeling of neural networks: Analysis and an application to orientation tuning
    • Nykamp, D. Q., & Tranchina, D. (2000). A population density approach that facilitates large-scale modeling of neural networks: Analysis and an application to orientation tuning. J. Comp. Neurosci., 8, 19-50.
    • (2000) J. Comp. Neurosci. , vol.8 , pp. 19-50
    • Nykamp, D.Q.1    Tranchina, D.2
  • 46
    • 5244280237 scopus 로고
    • Master equation approach to stochastic neurodynamics
    • Ohira, T.,&Cowan, J. (1993).Master equation approach to stochastic neurodynamics. Phys. Rev. E, 48, 2259-2266.
    • (1993) Phys. Rev. E , vol.48 , pp. 2259-2266
    • Ohira, T.1    Cowan, J.2
  • 47
    • 0022131433 scopus 로고
    • Path integral approach to birth-death processes on a lattice
    • Peliti, L. (1985). Path integral approach to birth-death processes on a lattice. Journal de Physique, 46, 1469-1483.
    • (1985) Journal de Physique , vol.46 , pp. 1469-1483
    • Peliti, L.1
  • 48
    • 0021325618 scopus 로고
    • Collective properties of neural networks: A statistical physics approach
    • Peretto, P. (1984). Collective properties of neural networks: A statistical physics approach. Biological Cybernetics, 50, 51-62.
    • (1984) Biological Cybernetics , vol.50 , pp. 51-62
    • Peretto, P.1
  • 49
    • 0034133323 scopus 로고    scopus 로고
    • Noise in integrate-and-fire neurons: From stochastic input to escape rates
    • Plesser, H. E., & Gerstner, W. E. (2000). Noise in integrate-and-fire neurons: From stochastic input to escape rates. Neural Comput., 12(2), 367-384.
    • (2000) Neural Comput. , vol.12 , Issue.2 , pp. 367-384
    • Plesser, H.E.1    Gerstner, W.E.2
  • 50
    • 0036717209 scopus 로고    scopus 로고
    • Integrate-and-fire neurons driven by correlated stochastic input
    • Salinas, E., & Sejnowski, T. J. (2002). Integrate-and-fire neurons driven by correlated stochastic input. Neural Comput., 14(9), 2111-2155.
    • (2002) Neural Comput. , vol.14 , Issue.9 , pp. 2111-2155
    • Salinas, E.1    Sejnowski, T.J.2
  • 51
    • 0027498486 scopus 로고
    • The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPS
    • Softky, W. R., & Koch, C. (1993). The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPS. Journal of Neuroscience, 13(1), 334-350.
    • (1993) Journal of Neuroscience , vol.13 , Issue.1 , pp. 334-350
    • Softky, W.R.1    Koch, C.2
  • 52
    • 33644875527 scopus 로고    scopus 로고
    • Spontaneous dynamics of asymmetric random recurrent spiking neural networks
    • Soula, H., Beslon, G., & Mazet, O. (2006). Spontaneous dynamics of asymmetric random recurrent spiking neural networks. Neural Comput., 18(1), 60-79.
    • (2006) Neural Comput. , vol.18 , Issue.1 , pp. 60-79
    • Soula, H.1    Beslon, G.2    Mazet, O.3
  • 53
    • 36849042690 scopus 로고    scopus 로고
    • Stochastic dynamics of a finite-size spiking neural network
    • Soula, H., & Chow, C. C. (2007). Stochastic dynamics of a finite-size spiking neural network. Neural Comput., 19(12), 3262-3292.
    • (2007) Neural Comput. , vol.19 , Issue.12 , pp. 3262-3292
    • Soula, H.1    Chow, C.C.2
  • 54
    • 20744451708 scopus 로고    scopus 로고
    • Applications of fieldtheoretic renormalization group methods to reaction-diffusion problems
    • Tauber, U. C., Howard, M., & Vollmayr-Lee, B. P. (2005). Applications of fieldtheoretic renormalization group methods to reaction-diffusion problems. Journal of Physics A: Mathematical and General, 38(17), R79-R131.
    • (2005) Journal of Physics A: Mathematical and General , vol.38 , Issue.17
    • Tauber, U.C.1    Howard, M.2    Vollmayr-Lee, B.P.3
  • 55
    • 36149037160 scopus 로고
    • Mean-field analysis of neuronal spike dynamics
    • Treves, A. (1993). Mean-field analysis of neuronal spike dynamics. Network: Computation in Neural Systems, 4, 259-284.
    • (1993) Network: Computation in Neural Systems , vol.4 , pp. 259-284
    • Treves, A.1
  • 56
    • 0029835892 scopus 로고    scopus 로고
    • Chaos in neuronal networks with balanced excitatory and inhibitory activity
    • Van Vreeswijk, C., & Sompolinsky, H. (1996). Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science, 274, 1724-1726.
    • (1996) Science , vol.274 , pp. 1724-1726
    • Van Vreeswijk, C.1    Sompolinsky, H.2
  • 57
    • 0032528729 scopus 로고    scopus 로고
    • Chaotic balanced state in a model of cortical circuits
    • Van Vreeswijk, C., & Sompolinsky, H. (1998). Chaotic balanced state in a model of cortical circuits. Neural Computation, 10, 1321-1371.
    • (1998) Neural Computation , vol.10 , pp. 1321-1371
    • Van Vreeswijk, C.1    Sompolinsky, H.2
  • 58
    • 0015260274 scopus 로고
    • Excitatory and inhibitory interactions in localized populations of model neurons
    • Wilson, H. R., & Cowan, J. D. (1972). Excitatory and inhibitory interactions in localized populations of model neurons. Biophysical Journal, 12, 1-24.
    • (1972) Biophysical Journal , vol.12 , pp. 1-24
    • Wilson, H.R.1    Cowan, J.D.2
  • 59
    • 0015868589 scopus 로고
    • A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue
    • Wilson, H. R., & Cowan, J. D. (1973). A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik, 13, 55-80.
    • (1973) Kybernetik , vol.13 , pp. 55-80
    • Wilson, H.R.1    Cowan, J.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.