메뉴 건너뛰기




Volumn 27, Issue 5, 2016, Pages 1184-1203

Geometric desingularization of degenerate singularities in the presence of fast rotation: A new proof of known results for slow passage through Hopf bifurcations

Author keywords

Blow up method; Canards; Delayed loss of stability; Dynamic bifurcations; Exponentially small splitting distances; Fast slow systems; Geometric desingularization

Indexed keywords


EID: 84950262825     PISSN: 00193577     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.indag.2015.11.005     Document Type: Article
Times cited : (41)

References (58)
  • 1
    • 0003130734 scopus 로고
    • The slow passage through a Hopf bifurcation: delay, memory effects, and resonance
    • [1] Baer, S.M., Erneux, T., Rinzel, J., The slow passage through a Hopf bifurcation: delay, memory effects, and resonance. SIAM J. Appl. Math. 49 (1989), 55–71.
    • (1989) SIAM J. Appl. Math. , vol.49 , pp. 55-71
    • Baer, S.M.1    Erneux, T.2    Rinzel, J.3
  • 2
    • 51849105988 scopus 로고    scopus 로고
    • Slow acceleration and deacceleration through a Hopf bifurcation: Power ramps, target nucleation, and elliptic bursting
    • [2] Baer, S.M., Gaekel, E.M., Slow acceleration and deacceleration through a Hopf bifurcation: Power ramps, target nucleation, and elliptic bursting. Phys. Rev. E, 78, 2008, 036205.
    • (2008) Phys. Rev. E , vol.78
    • Baer, S.M.1    Gaekel, E.M.2
  • 6
    • 0002083219 scopus 로고
    • Asymptotics, superasymptotics, hyperasymptotics
    • H. Segur S. Tanveer H. Levine Springer Verlag New York
    • [6] Berry, M.V., Asymptotics, superasymptotics, hyperasymptotics. Segur, H., Tanveer, S., Levine, H., (eds.) Asymptotics Beyond All Orders NATO ASI Series, vol. 284, 1991, Springer Verlag, New York, 1–14.
    • (1991) Asymptotics Beyond All Orders, NATO ASI Series , vol.284 , pp. 1-14
    • Berry, M.V.1
  • 7
    • 84890428688 scopus 로고    scopus 로고
    • Geometric desingularization of a cusp singularity in slow-fast systems with applications to Zeeman's examples
    • [7] Broer, H.W., Kaper, T.J., Krupa, M., Geometric desingularization of a cusp singularity in slow-fast systems with applications to Zeeman's examples. J. Dynam. Differential Equations 25 (2013), 925–958.
    • (2013) J. Dynam. Differential Equations , vol.25 , pp. 925-958
    • Broer, H.W.1    Kaper, T.J.2    Krupa, M.3
  • 8
    • 0002294440 scopus 로고
    • The canard unchained or how fast/slow dynamical problems bifurcate
    • [8] Diener, M., The canard unchained or how fast/slow dynamical problems bifurcate. Math. Intelligencer 6 (1984), 38–49.
    • (1984) Math. Intelligencer , vol.6 , pp. 38-49
    • Diener, M.1
  • 9
    • 0003879016 scopus 로고
    • Asymptotic Expansions: their Derivation and Interpretation
    • Academic Press London, New York
    • [9] Dingle, R.B., Asymptotic Expansions: their Derivation and Interpretation. 1973, Academic Press, London, New York.
    • (1973)
    • Dingle, R.B.1
  • 10
    • 0002336002 scopus 로고
    • Techniques in the theory of local bifurcations: blow-up, normal forms, nilpotent bifurcations, and singular perturbations
    • D. Schlomiuk Kluwer Dordrecht
    • [10] Dumortier, F., Techniques in the theory of local bifurcations: blow-up, normal forms, nilpotent bifurcations, and singular perturbations. Schlomiuk, D., (eds.) Bifurcations and Periodic Orbits of Vector Fields NATO ASI Series C, vol. 408, 1993, Kluwer, Dordrecht, 19–73.
    • (1993) Bifurcations and Periodic Orbits of Vector Fields, NATO ASI Series C , vol.408 , pp. 19-73
    • Dumortier, F.1
  • 12
    • 84938057841 scopus 로고    scopus 로고
    • Wave speeds for the FKPP equation with enhancements of the reaction function
    • [12] Dumortier, F., Kaper, T.J., Wave speeds for the FKPP equation with enhancements of the reaction function. Z. Angew. Math. Phys. 66 (2015), 607–629.
    • (2015) Z. Angew. Math. Phys. , vol.66 , pp. 607-629
    • Dumortier, F.1    Kaper, T.J.2
  • 13
    • 33750685310 scopus 로고    scopus 로고
    • The asymptotic critical wave speed in a family of scalar reaction–diffusion equations
    • [13] Dumortier, F., Popović, Kaper, T.J., The asymptotic critical wave speed in a family of scalar reaction–diffusion equations. J. Math. Anal. Appl. 326 (2007), 1007–1023.
    • (2007) J. Math. Anal. Appl. , vol.326 , pp. 1007-1023
    • Dumortier, F.1    Popović2    Kaper, T.J.3
  • 14
    • 33947384615 scopus 로고    scopus 로고
    • The critical wave speed for the FKPP equation with cut-off
    • [14] Dumortier, F., Popović, N., Kaper, T.J., The critical wave speed for the FKPP equation with cut-off. Nonlinearity 20 (2007), 855–877.
    • (2007) Nonlinearity , vol.20 , pp. 855-877
    • Dumortier, F.1    Popović, N.2    Kaper, T.J.3
  • 15
    • 77956095169 scopus 로고    scopus 로고
    • A geometric approach to bistable front propagation in scalar reaction–diffusion equations with cut-off
    • [15] Dumortier, F., Popović, N., Kaper, T.J., A geometric approach to bistable front propagation in scalar reaction–diffusion equations with cut-off. Physica D 239 (2010), 1984–1999.
    • (2010) Physica D , vol.239 , pp. 1984-1999
    • Dumortier, F.1    Popović, N.2    Kaper, T.J.3
  • 16
    • 0039243335 scopus 로고    scopus 로고
    • Canard cycles and center manifolds
    • [16] Dumortier, F., Roussarie, R., Canard cycles and center manifolds. Mem. Am. Math. Soc. 121:577 (1996), 1–100.
    • (1996) Mem. Am. Math. Soc. , vol.121 , Issue.577 , pp. 1-100
    • Dumortier, F.1    Roussarie, R.2
  • 17
    • 0001838331 scopus 로고    scopus 로고
    • Geometric singular perturbation theory beyond normal hyperbolicity
    • C.K.R.T. Jones A. Khibnik Springer New York
    • [17] Dumortier, F., Roussarie, R., Geometric singular perturbation theory beyond normal hyperbolicity. Jones, C.K.R.T., Khibnik, A., (eds.) Multiple-Time-Scale Dynamical Systems IMA Vol. Appl. Math., vol. 122, 2001, Springer, New York, 29–63.
    • (2001) Multiple-Time-Scale Dynamical Systems, IMA Vol. Appl. Math. , vol.122 , pp. 29-63
    • Dumortier, F.1    Roussarie, R.2
  • 21
    • 0001356311 scopus 로고
    • Persistence and smoothness of invariant manifolds for flows
    • [21] Fenichel, N., Persistence and smoothness of invariant manifolds for flows. Indiana Univ. Math. J. 21 (1971), 193–226.
    • (1971) Indiana Univ. Math. J. , vol.21 , pp. 193-226
    • Fenichel, N.1
  • 22
    • 34250627892 scopus 로고
    • Geometrical singular perturbation theory for ordinary differential equations
    • [22] Fenichel, N., Geometrical singular perturbation theory for ordinary differential equations. J. Differential Equations 31 (1979), 53–98.
    • (1979) J. Differential Equations , vol.31 , pp. 53-98
    • Fenichel, N.1
  • 23
    • 84856287858 scopus 로고    scopus 로고
    • Geometric singular perturbation analysis of an autocatalator model
    • [23] Gucwa, I., Szmolyan, P., Geometric singular perturbation analysis of an autocatalator model. Discrete Contin. Dyn. Syst. Ser. S 2 (2009), 783–806.
    • (2009) Discrete Contin. Dyn. Syst. Ser. S , vol.2 , pp. 783-806
    • Gucwa, I.1    Szmolyan, P.2
  • 24
    • 84967395875 scopus 로고    scopus 로고
    • Geometric analysis of delayed bifurcations
    • (Ph.D. thesis) Department of Mathematics, Boston University
    • [24] Hayes, M.G., Geometric analysis of delayed bifurcations. (Ph.D. thesis), 2000, Department of Mathematics, Boston University.
    • (2000)
    • Hayes, M.G.1
  • 26
    • 84873408825 scopus 로고    scopus 로고
    • Existence and stability of traveling pulses in a reaction–diffusion-mechanics system
    • [26] Holzer, M.D., Doelman, A., Kaper, T.J., Existence and stability of traveling pulses in a reaction–diffusion-mechanics system. J. Nonlinear Sci. 23 (2013), 129–177.
    • (2013) J. Nonlinear Sci. , vol.23 , pp. 129-177
    • Holzer, M.D.1    Doelman, A.2    Kaper, T.J.3
  • 27
    • 84862727240 scopus 로고    scopus 로고
    • A slow pushed front in a Lotka–Volterra competition model
    • [27] Holzer, M.D., Scheel, A., A slow pushed front in a Lotka–Volterra competition model. Nonlinearity 25 (2012), 2151–2179.
    • (2012) Nonlinearity , vol.25 , pp. 2151-2179
    • Holzer, M.D.1    Scheel, A.2
  • 29
    • 84856240719 scopus 로고    scopus 로고
    • Scaling in singular perturbation problems: blowing up a relaxation oscillator
    • [29] Kosiuk, I., Szmolyan, P., Scaling in singular perturbation problems: blowing up a relaxation oscillator. SIAM J. Appl. Dyn. Syst. 10 (2011), 1307–1343.
    • (2011) SIAM J. Appl. Dyn. Syst. , vol.10 , pp. 1307-1343
    • Kosiuk, I.1    Szmolyan, P.2
  • 30
    • 49749152086 scopus 로고    scopus 로고
    • New dynamics in cerebellar Purkinje cells: torus canards
    • [30] Kramer, M.A., Traub, R.D., Kopell, N., New dynamics in cerebellar Purkinje cells: torus canards. Phys. Rev. Lett., 101, 2008, 068103.
    • (2008) Phys. Rev. Lett. , vol.101
    • Kramer, M.A.1    Traub, R.D.2    Kopell, N.3
  • 31
    • 0036052772 scopus 로고    scopus 로고
    • Extending geometric singular perturbation theory to nonhyperbolic points–fold and canard points in two dimensions
    • [31] Krupa, M., Szmolyan, P., Extending geometric singular perturbation theory to nonhyperbolic points–fold and canard points in two dimensions. SIAM J. Math. Anal. 33 (2001), 286–314.
    • (2001) SIAM J. Math. Anal. , vol.33 , pp. 286-314
    • Krupa, M.1    Szmolyan, P.2
  • 32
    • 0035839416 scopus 로고    scopus 로고
    • Relaxation oscillation and canard explosion
    • [32] Krupa, M., Szmolyan, P., Relaxation oscillation and canard explosion. J. Differential Equations 174 (2001), 312–368.
    • (2001) J. Differential Equations , vol.174 , pp. 312-368
    • Krupa, M.1    Szmolyan, P.2
  • 33
    • 77952429290 scopus 로고    scopus 로고
    • Local analysis near a folded saddle–node singularity
    • [33] Krupa, M., Wechselberger, M., Local analysis near a folded saddle–node singularity. J. Differential Equations 248 (2010), 2841–2888.
    • (2010) J. Differential Equations , vol.248 , pp. 2841-2888
    • Krupa, M.1    Wechselberger, M.2
  • 35
    • 84902664274 scopus 로고    scopus 로고
    • Transonic evaporation waves in a spherically-symmetric nozzle
    • [35] Lin, X.-B., Wechselberger, M., Transonic evaporation waves in a spherically-symmetric nozzle. SIAM J. Math. An. 46 (2014), 1476–1504.
    • (2014) SIAM J. Math. An. , vol.46 , pp. 1476-1504
    • Lin, X.-B.1    Wechselberger, M.2
  • 36
    • 58149350059 scopus 로고    scopus 로고
    • Traveling waves for a thin liquid film with surfactant on an inclined plane
    • [36] Manukian, V., Schecter, S., Traveling waves for a thin liquid film with surfactant on an inclined plane. Nonlinearity 22 (2009), 85–122.
    • (2009) Nonlinearity , vol.22 , pp. 85-122
    • Manukian, V.1    Schecter, S.2
  • 37
    • 0000881314 scopus 로고
    • Persistence of stability loss for dynamical bifurcations. I
    • (in Russian). [English translation: Diff. Eq., 23 (1988) 1385–1391, Plenum Pub. Corp.]
    • [37] Neishtadt, A.I., Persistence of stability loss for dynamical bifurcations. I. Differ. Uravn. 23 (1987), 2060–2067 (in Russian). [English translation: Diff. Eq., 23 (1988) 1385–1391, Plenum Pub. Corp.].
    • (1987) Differ. Uravn. , vol.23 , pp. 2060-2067
    • Neishtadt, A.I.1
  • 38
    • 0001704275 scopus 로고
    • Persistence of stability loss for dynamical bifurcations. II
    • (in Russian). [English translation: Diff. Eq., 24 (1988) 171–176, Plenum Pub. Corp.]
    • [38] Neishtadt, A.I., Persistence of stability loss for dynamical bifurcations. II. Differ. Uravn. 24 (1988), 226–233 (in Russian). [English translation: Diff. Eq., 24 (1988) 171–176, Plenum Pub. Corp.].
    • (1988) Differ. Uravn. , vol.24 , pp. 226-233
    • Neishtadt, A.I.1
  • 40
    • 77956094477 scopus 로고    scopus 로고
    • Front speeds, cut-offs, and desingularization: a brief case study
    • Amer. Math. Soc. Providence, RI
    • [40] Popović, N., Front speeds, cut-offs, and desingularization: a brief case study. Fluids and Waves Contemp. Math., vol. 440, 2007, Amer. Math. Soc., Providence, RI, 187–195.
    • (2007) Fluids and Waves, Contemp. Math. , vol.440 , pp. 187-195
    • Popović, N.1
  • 41
    • 79957927597 scopus 로고    scopus 로고
    • A geometric analysis of front propagation in a family of degenerate reaction–diffusion equations with cut-off
    • [41] Popović, N., A geometric analysis of front propagation in a family of degenerate reaction–diffusion equations with cut-off. Z. Angew. Math. Phys. 62 (2011), 405–437.
    • (2011) Z. Angew. Math. Phys. , vol.62 , pp. 405-437
    • Popović, N.1
  • 42
    • 84868193595 scopus 로고    scopus 로고
    • A geometric analysis of front propagation in an integrable Nagumo equation with a linear cut-off
    • [42] Popović, N., A geometric analysis of front propagation in an integrable Nagumo equation with a linear cut-off. Physica D 241 (2012), 1976–1984.
    • (2012) Physica D , vol.241 , pp. 1976-1984
    • Popović, N.1
  • 43
    • 1942478419 scopus 로고    scopus 로고
    • A geometric analysis of the Lagerstrom model problem
    • [43] Popović, N., Szmolyan, P., A geometric analysis of the Lagerstrom model problem. J. Differential Equations 199 (2004), 290–325.
    • (2004) J. Differential Equations , vol.199 , pp. 290-325
    • Popović, N.1    Szmolyan, P.2
  • 44
    • 2942682726 scopus 로고    scopus 로고
    • Defects in oscillatory media: toward a classification
    • [44] Sandstede, B., Scheel, A., Defects in oscillatory media: toward a classification. SIAM J. Appl. Dyn. Syst. 3 (2004), 1–68.
    • (2004) SIAM J. Appl. Dyn. Syst. , vol.3 , pp. 1-68
    • Sandstede, B.1    Scheel, A.2
  • 45
    • 2942631674 scopus 로고    scopus 로고
    • Evans function and blow-up methods in critical eigenvalue problems
    • [45] Sandstede, B., Scheel, A., Evans function and blow-up methods in critical eigenvalue problems. Discrete Contin. Dyn. Syst. Ser. A 10 (2004), 941–964.
    • (2004) Discrete Contin. Dyn. Syst. Ser. A , vol.10 , pp. 941-964
    • Sandstede, B.1    Scheel, A.2
  • 46
    • 78049306041 scopus 로고    scopus 로고
    • Heteroclinic orbits in slow-fast Hamiltonian systems with slow manifold bifurcations
    • [46] Schecter, S., Sourdis, C., Heteroclinic orbits in slow-fast Hamiltonian systems with slow manifold bifurcations. J. Dynam. Differential Equations 22 (2010), 629–655.
    • (2010) J. Dynam. Differential Equations , vol.22 , pp. 629-655
    • Schecter, S.1    Sourdis, C.2
  • 47
  • 48
    • 68649083754 scopus 로고    scopus 로고
    • Persistence of rarefactions under Dafermos regularization: blow-up and an Exchange Lemma for gain-of-stability turning points
    • [48] Schecter, S., Szmolyan, P., Persistence of rarefactions under Dafermos regularization: blow-up and an Exchange Lemma for gain-of-stability turning points. SIAM J. Appl. Dyn. Syst. 8 (2009), 822–853.
    • (2009) SIAM J. Appl. Dyn. Syst. , vol.8 , pp. 822-853
    • Schecter, S.1    Szmolyan, P.2
  • 49
    • 0001206248 scopus 로고
    • A discussion of a certain system of differential equations with a small parameter multiplying the highest derivatives
    • [49] Shishkova, M.A., A discussion of a certain system of differential equations with a small parameter multiplying the highest derivatives. Dokl. Akad. Nauk SSSR 209 (1973), 576–579.
    • (1973) Dokl. Akad. Nauk SSSR , vol.209 , pp. 576-579
    • Shishkova, M.A.1
  • 50
    • 38248998932 scopus 로고
    • Delayed oscillation phenomena in the FitzHugh Nagumo equation
    • [50] Su, J., Delayed oscillation phenomena in the FitzHugh Nagumo equation. J. Differential Equations 105 (1993), 180–215.
    • (1993) J. Differential Equations , vol.105 , pp. 180-215
    • Su, J.1
  • 51
    • 0347461211 scopus 로고    scopus 로고
    • Effects of periodic forcing on delayed bifurcations
    • [51] Su, J., Effects of periodic forcing on delayed bifurcations. J. Dynam. Differential Equations 9 (1997), 561–625.
    • (1997) J. Dynam. Differential Equations , vol.9 , pp. 561-625
    • Su, J.1
  • 54
    • 84940878688 scopus 로고    scopus 로고
    • Canards of folded saddle–node type I
    • [54] Vo, T., Wechselberger, M., Canards of folded saddle–node type I. SIAM J. Math. Anal. 47 (2015), 3235–3283.
    • (2015) SIAM J. Math. Anal. , vol.47 , pp. 3235-3283
    • Vo, T.1    Wechselberger, M.2
  • 58
    • 78149309138 scopus 로고    scopus 로고
    • Folds, canards, and shocks in advection–reaction–diffusion models
    • [58] Wechselberger, M., Pettet, G., Folds, canards, and shocks in advection–reaction–diffusion models. Nonlinearity 23 (2010), 1949–1969.
    • (2010) Nonlinearity , vol.23 , pp. 1949-1969
    • Wechselberger, M.1    Pettet, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.