-
1
-
-
0347997366
-
Phase plane analysis of one-dimensional reaction-diffusion waves with degenerate reaction terms
-
Billingham J. Phase plane analysis of one-dimensional reaction-diffusion waves with degenerate reaction terms. Dyn. Stab. Syst. 15 1 (2000) 23-33
-
(2000)
Dyn. Stab. Syst.
, vol.15
, Issue.1
, pp. 23-33
-
-
Billingham, J.1
-
3
-
-
0002336002
-
Techniques in the theory of local bifurcations: Blow-up, normal forms, nilpotent bifurcations, singular perturbations
-
Bifurcations and Periodic Orbits of Vector Fields. Schlomiuk D. (Ed), Kluwer Acad. Publ., Dordrecht
-
Dumortier F. Techniques in the theory of local bifurcations: Blow-up, normal forms, nilpotent bifurcations, singular perturbations. In: Schlomiuk D. (Ed). Bifurcations and Periodic Orbits of Vector Fields. NATO Sci. Ser. C Math. Phys. Sci. vol. 408 (1993), Kluwer Acad. Publ., Dordrecht 19-73
-
(1993)
NATO Sci. Ser. C Math. Phys. Sci.
, vol.408
, pp. 19-73
-
-
Dumortier, F.1
-
4
-
-
4444232192
-
Topics in singularities and bifurcations of vector fields
-
Normal Forms, Bifurcations, and Finiteness Problems in Differential Equations. Ilyashenko Y., Rousseau C., and Sabidussi G. (Eds), Kluwer Acad. Publ., Dordrecht
-
Dumortier F., and De Maesschalck P. Topics in singularities and bifurcations of vector fields. In: Ilyashenko Y., Rousseau C., and Sabidussi G. (Eds). Normal Forms, Bifurcations, and Finiteness Problems in Differential Equations. NATO Sci. Ser. II Math. Phys. Chem. vol. 137 (2004), Kluwer Acad. Publ., Dordrecht 33-86
-
(2004)
NATO Sci. Ser. II Math. Phys. Chem.
, vol.137
, pp. 33-86
-
-
Dumortier, F.1
De Maesschalck, P.2
-
6
-
-
0001838331
-
Geometric singular perturbation theory beyond normal hyperbolicity
-
Multiple-time-scale dynamical systems. Jones C.K.R.T., and Khibnik A. (Eds), Springer-Verlag, New York
-
Dumortier F., and Roussarie R. Geometric singular perturbation theory beyond normal hyperbolicity. In: Jones C.K.R.T., and Khibnik A. (Eds). Multiple-time-scale dynamical systems. IMA Vol. Math. Appl. vol. 122 (2001), Springer-Verlag, New York 29-63
-
(2001)
IMA Vol. Math. Appl.
, vol.122
, pp. 29-63
-
-
Dumortier, F.1
Roussarie, R.2
-
8
-
-
0001356311
-
Persistence and smoothness of invariant manifolds for flows
-
Fenichel N. Persistence and smoothness of invariant manifolds for flows. Indiana Univ. Math. J. 21 (1971) 193-226
-
(1971)
Indiana Univ. Math. J.
, vol.21
, pp. 193-226
-
-
Fenichel, N.1
-
9
-
-
34250627892
-
Geometric singular perturbation theory for ordinary differential equations
-
Fenichel N. Geometric singular perturbation theory for ordinary differential equations. J. Differential Equations 31 1 (1979) 53-98
-
(1979)
J. Differential Equations
, vol.31
, Issue.1
, pp. 53-98
-
-
Fenichel, N.1
-
10
-
-
0000268135
-
The wave of advance of advantageous genes
-
Fisher R.A. The wave of advance of advantageous genes. Ann. Eugenics 7 (1937) 355-369
-
(1937)
Ann. Eugenics
, vol.7
, pp. 355-369
-
-
Fisher, R.A.1
-
11
-
-
0002316532
-
Geometric singular perturbation theory
-
Dynamical Systems, Springer-Verlag, New York
-
Jones C.K.R.T. Geometric singular perturbation theory. Dynamical Systems. Lecture Notes in Math. vol. 1609 (1995), Springer-Verlag, New York 44-118
-
(1995)
Lecture Notes in Math.
, vol.1609
, pp. 44-118
-
-
Jones, C.K.R.T.1
-
12
-
-
0002722044
-
Etude de l'équation de la diffusion avec croissance de la quantité de matiére et son application à un problème biologique
-
Kolmogorov A.N., Petrowskii I.G., and Piscounov N. Etude de l'équation de la diffusion avec croissance de la quantité de matiére et son application à un problème biologique. Moscow Univ. Math. Bull. 1 (1937) 1-25
-
(1937)
Moscow Univ. Math. Bull.
, vol.1
, pp. 1-25
-
-
Kolmogorov, A.N.1
Petrowskii, I.G.2
Piscounov, N.3
-
13
-
-
0036052772
-
Extending geometric singular perturbation theory to nonhyperbolic points-fold and canard points in two dimensions
-
Krupa M., and Szmolyan P. Extending geometric singular perturbation theory to nonhyperbolic points-fold and canard points in two dimensions. SIAM J. Math. Anal. 33 2 (2001) 286-314
-
(2001)
SIAM J. Math. Anal.
, vol.33
, Issue.2
, pp. 286-314
-
-
Krupa, M.1
Szmolyan, P.2
-
14
-
-
0035839416
-
Relaxation oscillation and canard explosion
-
Krupa M., and Szmolyan P. Relaxation oscillation and canard explosion. J. Differential Equations 174 2 (2001) 312-368
-
(2001)
J. Differential Equations
, vol.174
, Issue.2
, pp. 312-368
-
-
Krupa, M.1
Szmolyan, P.2
-
15
-
-
0037099352
-
The evolution of reaction-diffusion waves in a class of reaction-diffusion equations: Algebraic decay rates
-
Leach J.A., Needham D.J., and Kay A.L. The evolution of reaction-diffusion waves in a class of reaction-diffusion equations: Algebraic decay rates. Phys. D 167 3-4 (2002) 153-182
-
(2002)
Phys. D
, vol.167
, Issue.3-4
, pp. 153-182
-
-
Leach, J.A.1
Needham, D.J.2
Kay, A.L.3
-
16
-
-
33750737520
-
-
P. De Maesschalck, Gevrey properties of real, planar singularly perturbed systems, preprint, 2005
-
-
-
-
17
-
-
0000321384
-
Reaction-diffusion waves in an isothermal chemical system with general orders of autocatalysis and spatial dimension
-
Merkin J.H., and Needham D.J. Reaction-diffusion waves in an isothermal chemical system with general orders of autocatalysis and spatial dimension. J. Appl. Math. Phys. (ZAMP) A 44 4 (1993) 707-721
-
(1993)
J. Appl. Math. Phys. (ZAMP) A
, vol.44
, Issue.4
, pp. 707-721
-
-
Merkin, J.H.1
Needham, D.J.2
-
18
-
-
0032662011
-
Reaction-diffusion and phase waves occurring in a class of scalar reaction-diffusion equations
-
Needham D.J., and Barnes A.N. Reaction-diffusion and phase waves occurring in a class of scalar reaction-diffusion equations. Nonlinearity 12 1 (1999) 41-58
-
(1999)
Nonlinearity
, vol.12
, Issue.1
, pp. 41-58
-
-
Needham, D.J.1
Barnes, A.N.2
-
19
-
-
33750688623
-
-
K. Ono, Analytical methods for reaction-diffusion equations: Critical wave speeds and axi-symmetric phenomena, PhD thesis, Boston University, Boston, MA, USA, 2001
-
-
-
-
20
-
-
25844483339
-
A geometric analysis of logarithmic switchback phenomena
-
International Workshop on Hysteresis & Multi-scale Asymptotics, University College Cork. Mortell M.P., O'Malley Jr. R.E., Pokrovskii A.V., and Sobolev V.A. (Eds). Ireland, 17-21 March 2004, Inst. Phys. Publishing, Bristol
-
Popović N. A geometric analysis of logarithmic switchback phenomena. In: Mortell M.P., O'Malley Jr. R.E., Pokrovskii A.V., and Sobolev V.A. (Eds). International Workshop on Hysteresis & Multi-scale Asymptotics, University College Cork. Ireland, 17-21 March 2004. J. Phys. Conf. Ser. vol. 22 (2005), Inst. Phys. Publishing, Bristol 164-173
-
(2005)
J. Phys. Conf. Ser.
, vol.22
, pp. 164-173
-
-
Popović, N.1
-
21
-
-
33646410420
-
Rigorous asymptotic expansions for critical wave speeds in a family of scalar reaction-diffusion equations
-
Popović N., and Kaper T.J. Rigorous asymptotic expansions for critical wave speeds in a family of scalar reaction-diffusion equations. J. Dynam. Differential Equations 18 1 (2006) 77-114
-
(2006)
J. Dynam. Differential Equations
, vol.18
, Issue.1
, pp. 77-114
-
-
Popović, N.1
Kaper, T.J.2
-
22
-
-
1942478419
-
A geometric analysis of the Lagerstrom model problem
-
Popović N., and Szmolyan P. A geometric analysis of the Lagerstrom model problem. J. Differential Equations 199 2 (2004) 290-325
-
(2004)
J. Differential Equations
, vol.199
, Issue.2
, pp. 290-325
-
-
Popović, N.1
Szmolyan, P.2
-
23
-
-
5744222787
-
Rigorous asymptotic expansions for Lagerstrom's model equation-A geometric approach
-
Popović N., and Szmolyan P. Rigorous asymptotic expansions for Lagerstrom's model equation-A geometric approach. Nonlinear Anal. 59 4 (2004) 531-565
-
(2004)
Nonlinear Anal.
, vol.59
, Issue.4
, pp. 531-565
-
-
Popović, N.1
Szmolyan, P.2
-
24
-
-
12144267827
-
Séries divergentes et théories asymptotiques
-
Ramis J.P. Séries divergentes et théories asymptotiques. Bull. Soc. Math. France 121 (1993)
-
(1993)
Bull. Soc. Math. France
, vol.121
-
-
Ramis, J.P.1
-
25
-
-
0030171463
-
Algebraic decay and variable speeds in wavefront solutions of a scalar reaction-diffusion equation
-
Sherratt J.A., and Marchant B.P. Algebraic decay and variable speeds in wavefront solutions of a scalar reaction-diffusion equation. IMA J. Appl. Math. 56 3 (1996) 289-302
-
(1996)
IMA J. Appl. Math.
, vol.56
, Issue.3
, pp. 289-302
-
-
Sherratt, J.A.1
Marchant, B.P.2
-
27
-
-
0041365491
-
Critical wave speeds for a family of scalar reaction-diffusion equations
-
Witelski T.P., Ono K., and Kaper T.J. Critical wave speeds for a family of scalar reaction-diffusion equations. Appl. Math. Lett. 14 1 (2001) 65-73
-
(2001)
Appl. Math. Lett.
, vol.14
, Issue.1
, pp. 65-73
-
-
Witelski, T.P.1
Ono, K.2
Kaper, T.J.3
|