-
1
-
-
0003851729
-
-
(Eds.), National Bureau of Standards Applied Mathematical Series, United States Department of Commerce, Washington
-
M. Abramowitz, I.A. Stegun (Eds.), Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, National Bureau of Standards Applied Mathematical Series, Vol. 55, United States Department of Commerce, Washington, 1964.
-
(1964)
Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables
, vol.55
-
-
Abramowitz, M.1
Stegun, I.A.2
-
2
-
-
0012494568
-
Gronwall inequalities
-
Carleton University, Ottawa
-
P.R. Beesack, Gronwall inequalities, in: Carleton Mathematical Lecture Notes, Vol. 11, Carleton University, Ottawa, 1975.
-
(1975)
Carleton Mathematical Lecture Notes
, vol.11
-
-
Beesack, P.R.1
-
3
-
-
21344442343
-
Partially hyperbolic fixed points with constraints
-
P. Bonckaert, Partially hyperbolic fixed points with constraints, Trans. Amer. Math. Soc. 348 (3) (1996) 997-1011.
-
(1996)
Trans. Amer. Math. Soc.
, vol.348
, Issue.3
, pp. 997-1011
-
-
Bonckaert, P.1
-
4
-
-
0015025343
-
On the Lagerstrom mathematical model for viscous flow at low Reynolds number
-
W.B. Bush, On the Lagerstrom mathematical model for viscous flow at low Reynolds number, SIAM J. Appl. Math. 20 (2) (1971) 279-287.
-
(1971)
SIAM J. Appl. Math.
, vol.20
, Issue.2
, pp. 279-287
-
-
Bush, W.B.1
-
5
-
-
0017905402
-
Proof of some asymptotic results for a model equation for low Reynolds number flow
-
D.S. Cohen, A. Fokas, P.A. Lagerstrom, Proof of some asymptotic results for a model equation for low Reynolds number flow, SIAM J. Appl. Math. 35 (1) (1978) 187-207.
-
(1978)
SIAM J. Appl. Math.
, vol.35
, Issue.1
, pp. 187-207
-
-
Cohen, D.S.1
Fokas, A.2
Lagerstrom, P.A.3
-
6
-
-
0004005623
-
-
Cambridge University Press, Cambridge
-
S.N. Chow, C. Li, D. Wang, Normal Forms and Bifurcation of Planar Vector Fields, Cambridge University Press, Cambridge, 1994.
-
(1994)
Normal Forms and Bifurcation of Planar Vector Fields
-
-
Chow, S.N.1
Li, C.2
Wang, D.3
-
8
-
-
0002252484
-
A method of desingularization for analytic two-dimensional vector field families
-
Z. Denkowska, R. Roussarie, A method of desingularization for analytic two-dimensional vector field families, Bol. Soc. Brasil Mat. 22 (1) (1991) 93-126.
-
(1991)
Bol. Soc. Brasil Mat.
, vol.22
, Issue.1
, pp. 93-126
-
-
Denkowska, Z.1
Roussarie, R.2
-
9
-
-
0002336002
-
Techniques in the theory of local bifurcations: Blow-up, normal forms, nilpotent bifurcations, singular perturbations
-
D. Schlomiuk (Ed.), Bifurcations and Periodic Orbits of Vector Fields, NATO ASI Series C, Kluwer Academic Publishers, Dordrecht
-
F. Dumortier, Techniques in the theory of local bifurcations: blow-up, normal forms, nilpotent bifurcations, singular perturbations, in: D. Schlomiuk (Ed.), Bifurcations and Periodic Orbits of Vector Fields, NATO ASI Series C, Mathematical and Physical Sciences, Vol. 408, Kluwer Academic Publishers, Dordrecht, 1993.
-
(1993)
Mathematical and Physical Sciences
, vol.408
-
-
Dumortier, F.1
-
11
-
-
34250627892
-
Geometric singular perturbation theory for ordinary differential equations
-
N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Differential Equations 31 (1979) 53-98.
-
(1979)
J. Differential Equations
, vol.31
, pp. 53-98
-
-
Fenichel, N.1
-
12
-
-
84968514940
-
A note on a functional inequality
-
H.E. Gollwitzer, A note on a functional inequality, Proc. Amer. Math. Soc. 23 (1969) 642-647.
-
(1969)
Proc. Amer. Math. Soc.
, vol.23
, pp. 642-647
-
-
Gollwitzer, H.E.1
-
13
-
-
0003285244
-
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
-
Springer, New York
-
J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, in: Applied Mathematical Sciences, Vol. 42, Springer, New York, 1983.
-
(1983)
Applied Mathematical Sciences
, vol.42
-
-
Guckenheimer, J.1
Holmes, P.2
-
14
-
-
0008038389
-
Singular perturbations for a nonlinear differential equation with a small parameter
-
G.C. Hsiao, Singular perturbations for a nonlinear differential equation with a small parameter, SIAM J. Math. Anal. 4 (1973) 283-301.
-
(1973)
SIAM J. Math. Anal.
, vol.4
, pp. 283-301
-
-
Hsiao, G.C.1
-
15
-
-
0025387093
-
On Lagerstrom's model of slow incompressible viscous flow
-
C. Hunter, M. Tajdari, S.D. Boyer, On Lagerstrom's model of slow incompressible viscous flow, SIAM J. Appl. Math. 50 (1) (1990) 48-63.
-
(1990)
SIAM J. Appl. Math.
, vol.50
, Issue.1
, pp. 48-63
-
-
Hunter, C.1
Tajdari, M.2
Boyer, S.D.3
-
16
-
-
0002316532
-
Geometric Singular Perturbation Theory
-
Dynamical Systems, Springer, New York
-
C.K.R.T. Jones, Geometric Singular Perturbation Theory, in: Dynamical Systems, Springer Lecture Notes in Mathematics, Vol. 1609, Springer, New York, 1995.
-
(1995)
Springer Lecture Notes in Mathematics
, vol.1609
-
-
Jones, C.K.R.T.1
-
17
-
-
0001369397
-
Low Reynolds number flow past a circular cylinder
-
S. Kaplun, Low Reynolds number flow past a circular cylinder, J. Math. Mech. 6 (1957) 595-603.
-
(1957)
J. Math. Mech.
, vol.6
, pp. 595-603
-
-
Kaplun, S.1
-
18
-
-
0001552939
-
Asymptotic expansions of Navier-Stokes solutions for small Reynolds numbers
-
S. Kaplun, P.A. Lagerstrom, Asymptotic expansions of Navier-Stokes solutions for small Reynolds numbers, J. Math. Mech. 6 (1957) 585-593.
-
(1957)
J. Math. Mech.
, vol.6
, pp. 585-593
-
-
Kaplun, S.1
Lagerstrom, P.A.2
-
19
-
-
0030088284
-
Asymptotics beyond all orders for a low Reynolds number flow
-
J.B. Keller, M.J. Ward, Asymptotics beyond all orders for a low Reynolds number flow, J. Eng. Math. 30 (1-2) (1996) 253-265.
-
(1996)
J. Eng. Math.
, vol.30
, Issue.1-2
, pp. 253-265
-
-
Keller, J.B.1
Ward, M.J.2
-
20
-
-
0036052772
-
Extending geometric singular perturbation theory to non-hyperbolic points - Fold and canard points in two dimensions
-
M. Krupa, P. Szmolyan, Extending geometric singular perturbation theory to non-hyperbolic points - fold and canard points in two dimensions, SIAM J. Math. Anal. 33 (2) (2001) 286-314.
-
(2001)
SIAM J. Math. Anal.
, vol.33
, Issue.2
, pp. 286-314
-
-
Krupa, M.1
Szmolyan, P.2
-
21
-
-
0029514864
-
A hybrid asymptotic-numerical method for low Reynolds number flow past a cylindrical body
-
M.C.A. Kropinski, M.J. Ward, J.B. Keller, A hybrid asymptotic-numerical method for low Reynolds number flow past a cylindrical body, SIAM J. Appl. Math. 55 (6) (1995) 1484-1510.
-
(1995)
SIAM J. Appl. Math.
, vol.55
, Issue.6
, pp. 1484-1510
-
-
Kropinski, M.C.A.1
Ward, M.J.2
Keller, J.B.3
-
22
-
-
1942531437
-
A course on perturbation methods
-
Lecture Notes by M. Mortell, National University of Ireland, Cork
-
P.A. Lagerstrom, A course on perturbation methods, Lecture Notes by M. Mortell, National University of Ireland, Cork, 1966.
-
(1966)
-
-
Lagerstrom, P.A.1
-
23
-
-
0003272695
-
Matched Asymptotic Expansions: Ideas and Techniques
-
Springer, New York
-
P.A. Lagerstrom, Matched Asymptotic Expansions: Ideas and Techniques, in: Applied Mathematical Sciences, Vol. 76, Springer, New York, 1988.
-
(1988)
Applied Mathematical Sciences
, vol.76
-
-
Lagerstrom, P.A.1
-
24
-
-
0015286459
-
Basic concepts underlying singular perturbation techniques
-
P.A. Lagerstrom, R.G. Casten, Basic concepts underlying singular perturbation techniques, SIAM Rev. 14 (1) (1972) 63-120.
-
(1972)
SIAM Rev.
, vol.14
, Issue.1
, pp. 63-120
-
-
Lagerstrom, P.A.1
Casten, R.G.2
-
25
-
-
0021451379
-
Note on logarithmic switchback terms in regular and singular perturbation expansions
-
P.A. Lagerstrom, D.A. Reinelt, Note on logarithmic switchback terms in regular and singular perturbation expansions, SIAM J. Appl. Math. 44 (3) (1984) 451-462.
-
(1984)
SIAM J. Appl. Math.
, vol.44
, Issue.3
, pp. 451-462
-
-
Lagerstrom, P.A.1
Reinelt, D.A.2
-
26
-
-
0002790544
-
Über die Stokes'sche Formel, und über eine verwandte Aufgabe in der Hydrodynamik
-
C.W. Oseen, Über die Stokes'sche Formel, und über eine verwandte Aufgabe in der Hydrodynamik, Ark. Math. Astronom. Fys. 6 (29) (1910).
-
(1910)
Ark. Math. Astronom. Fys.
, vol.6
, Issue.29
-
-
Oseen, C.W.1
-
27
-
-
85030877040
-
Rigorous asymptotic expansions for Lagerstrom's model equation - A geometric approach
-
in preparation
-
N. Popović, P. Szmolyan, Rigorous asymptotic expansions for Lagerstrom's model equation - a geometric approach, in preparation.
-
-
-
Popović, N.1
Szmolyan, P.2
-
28
-
-
84958437158
-
Expansions at small Reynolds numbers for the flow past a sphere and a circular cylinder
-
I. Proudman, J.R.A. Pearson, Expansions at small Reynolds numbers for the flow past a sphere and a circular cylinder, J. Fluid Mech. 2 (1957) 237-262.
-
(1957)
J. Fluid Mech.
, vol.2
, pp. 237-262
-
-
Proudman, I.1
Pearson, J.R.A.2
-
29
-
-
0016534495
-
On the asymptotic solution of the Lagerstrom model equation
-
S. Rosenblat, J. Shepherd, On the asymptotic solution of the Lagerstrom model equation, SIAM J. Appl. Math. 29 (1) (1975) 110-120.
-
(1975)
SIAM J. Appl. Math.
, vol.29
, Issue.1
, pp. 110-120
-
-
Rosenblat, S.1
Shepherd, J.2
-
30
-
-
1942435379
-
Note on the Lagerstrom singular perturbation models
-
L.A. Skinner, Note on the Lagerstrom singular perturbation models, SIAM J. Appl. Math. 41 (2) (1981) 362-364.
-
(1981)
SIAM J. Appl. Math.
, vol.41
, Issue.2
, pp. 362-364
-
-
Skinner, L.A.1
-
31
-
-
0000542238
-
On the structure of local homeomorphisms of Euclidean n-space, II
-
S. Sternberg, On the structure of local homeomorphisms of Euclidean n-space, II, Amer. J. Math. 80 (1958) 623-631.
-
(1958)
Amer. J. Math.
, vol.80
, pp. 623-631
-
-
Sternberg, S.1
-
32
-
-
0001041112
-
On the effect of the internal friction of fluids on the motion of pendulums
-
G.G. Stokes, On the effect of the internal friction of fluids on the motion of pendulums, Trans. Camb. Philos. Soc. 9 (Part II) (1851) 8-106.
-
(1851)
Trans. Camb. Philos. Soc.
, vol.9
, Issue.PART II
, pp. 8-106
-
-
Stokes, G.G.1
-
33
-
-
0000152319
-
Partially hyperbolic fixed points
-
F. Takens, Partially hyperbolic fixed points, Topology 10 (1971) 133-147.
-
(1971)
Topology
, vol.10
, pp. 133-147
-
-
Takens, F.1
-
34
-
-
5744229125
-
Asymptotic expansions using blow-up
-
ZAMP, to appear
-
S. van Gils, M. Krupa, P. Szmolyan, Asymptotic expansions using blow-up, ZAMP, to appear.
-
-
-
van Gils, S.1
Krupa, M.2
Szmolyan, P.3
-
35
-
-
0000274860
-
Second approximations to viscous fluid motion
-
A.N. Whitehead, Second approximations to viscous fluid motion, Quart. J. Math. 23 (1889) 143-152.
-
(1889)
Quart. J. Math.
, vol.23
, pp. 143-152
-
-
Whitehead, A.N.1
|