메뉴 건너뛰기




Volumn 241, Issue 22, 2012, Pages 1976-1984

A geometric analysis of front propagation in an integrable Nagumo equation with a linear cut-off

Author keywords

Cut offs; Front propagation; Geometric desingularization; Maxwell point; Reaction diffusion equations

Indexed keywords

DYNAMICAL SYSTEMS; GEOMETRY; LINEAR EQUATIONS;

EID: 84868193595     PISSN: 01672789     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.physd.2011.05.007     Document Type: Article
Times cited : (7)

References (21)
  • 1
    • 0003919106 scopus 로고    scopus 로고
    • Interdisciplinary Applied Mathematics Springer-Verlag New York
    • J. Keener, and J. Sneyd Mathematical Physiology Interdisciplinary Applied Mathematics vol. 8 1998 Springer-Verlag New York
    • (1998) Mathematical Physiology , vol.8 VOL.
    • Keener, J.1    Sneyd, J.2
  • 2
    • 35948990936 scopus 로고    scopus 로고
    • Effect of a cutoff on pushed and bistable fronts of the reaction-diffusion equation
    • R. Benguria, M. Depassier, and V. Haikala Effect of a cutoff on pushed and bistable fronts of the reaction-diffusion equation Phys. Rev. E 76 5 2007 051101
    • (2007) Phys. Rev. e , vol.76 , Issue.5 , pp. 051101
    • Benguria, R.1    Depassier, M.2    Haikala, V.3
  • 3
    • 77956095169 scopus 로고    scopus 로고
    • A geometric approach to bistable front propagation in scalar reaction-diffusion equations with cut-off
    • F. Dumortier, N. Popović, and T. Kaper A geometric approach to bistable front propagation in scalar reaction-diffusion equations with cut-off Physica D 239 20 2010 1984 1999
    • (2010) Physica D , vol.239 , Issue.20 , pp. 1984-1999
    • Dumortier, F.1    Popović, N.2    Kaper, T.3
  • 4
    • 79957927597 scopus 로고    scopus 로고
    • A geometric analysis of front propagation in a family of degenerate reaction-diffusion equations with cut-off
    • in press
    • N. Popović, A geometric analysis of front propagation in a family of degenerate reaction-diffusion equations with cut-off, Z. Angew. Math. Phys. (2011), in press (doi:10.1007/s00033-011-0115-6).
    • (2011) Z. Angew. Math. Phys.
    • Popović, N.1
  • 5
    • 0001425072 scopus 로고    scopus 로고
    • Shift in the velocity of a front due to a cut-off
    • E. Brunet, and B. Derrida Shift in the velocity of a front due to a cut-off Phys. Rev. E 56 3 2007 2597 2604
    • (2007) Phys. Rev. e , vol.56 , Issue.3 , pp. 2597-2604
    • Brunet, E.1    Derrida, B.2
  • 6
    • 5844310074 scopus 로고    scopus 로고
    • Speed of fronts of the reaction-diffusion equation
    • R. Benguria, and M. Depassier Speed of fronts of the reaction-diffusion equation Phys. Rev. Lett. 77 6 1996 1171 1173
    • (1996) Phys. Rev. Lett. , vol.77 , Issue.6 , pp. 1171-1173
    • Benguria, R.1    Depassier, M.2
  • 7
    • 34347351922 scopus 로고    scopus 로고
    • Speed of pulled fronts with a cutoff
    • R. Benguria, and M. Depassier Speed of pulled fronts with a cutoff Phys. Rev. E 75 5 2007 051106
    • (2007) Phys. Rev. e , vol.75 , Issue.5 , pp. 051106
    • Benguria, R.1    Depassier, M.2
  • 8
    • 0001371280 scopus 로고    scopus 로고
    • Front propagation: Precursors, cutoffs, and structural stability
    • D. Kessler, Z. Ner, and L. Sander Front propagation: precursors, cutoffs, and structural stability Phys. Rev. E 58 1 1998 107 114
    • (1998) Phys. Rev. e , vol.58 , Issue.1 , pp. 107-114
    • Kessler, D.1    Ner, Z.2    Sander, L.3
  • 9
    • 28844462834 scopus 로고    scopus 로고
    • Variational principles and the shift in the front speed due to a cutoff
    • V. Méndez, D. Campos, and E. Zemskov Variational principles and the shift in the front speed due to a cutoff Phys. Rev. E 72 5 2005 056113
    • (2005) Phys. Rev. e , vol.72 , Issue.5 , pp. 056113
    • Méndez, V.1    Campos, D.2    Zemskov, E.3
  • 10
    • 33947384615 scopus 로고    scopus 로고
    • The critical wave speed for the Fisher-Kolmogorov-Petrowskii-Piscounov equation with cut-off
    • F. Dumortier, N. Popović, and T. Kaper The critical wave speed for the Fisher-Kolmogorov-Petrowskii-Piscounov equation with cut-off Nonlinearity 20 4 2007 855 877
    • (2007) Nonlinearity , vol.20 , Issue.4 , pp. 855-877
    • Dumortier, F.1    Popović, N.2    Kaper, T.3
  • 11
    • 0002336002 scopus 로고
    • Techniques in the theory of local bifurcations: Blow-up, normal forms, nilpotent bifurcations, singular perturbations
    • D. Schlomiuk, NATO ASI Series C, Mathematical and Physical Sciences Kluwer Academic Publishers Dordrecht, The Netherlands
    • F. Dumortier Techniques in the theory of local bifurcations: blow-up, normal forms, nilpotent bifurcations, singular perturbations D. Schlomiuk, Bifurcations and Periodic Orbits of Vector Fields NATO ASI Series C, Mathematical and Physical Sciences vol. 408 1993 Kluwer Academic Publishers Dordrecht, The Netherlands 19 73
    • (1993) Bifurcations and Periodic Orbits of Vector Fields , vol.408 VOL. , pp. 19-73
    • Dumortier, F.1
  • 13
    • 0036052772 scopus 로고    scopus 로고
    • Extending geometric singular perturbation theory to nonhyperbolic points - Fold and canard points in two dimensions
    • M. Krupa, and P. Szmolyan Extending geometric singular perturbation theory to nonhyperbolic points - fold and canard points in two dimensions SIAM J. Math. Anal. 33 2 2001 286 314
    • (2001) SIAM J. Math. Anal. , vol.33 , Issue.2 , pp. 286-314
    • Krupa, M.1    Szmolyan, P.2
  • 15
    • 0003698819 scopus 로고    scopus 로고
    • 3rd Edition Texts in Applied Mathematics Springer-Verlag New York
    • L. Perko Differential Equations and Dynamical Systems 3rd Edition Texts in Applied Mathematics vol. 7 2001 Springer-Verlag New York
    • (2001) Differential Equations and Dynamical Systems , vol.7 VOL.
    • Perko, L.1
  • 17
    • 34250627892 scopus 로고
    • Geometric singular perturbation theory for ordinary differential equations
    • N. Fenichel Geometric singular perturbation theory for ordinary differential equations J. Differential Equations 31 1 1979 53 98
    • (1979) J. Differential Equations , vol.31 , Issue.1 , pp. 53-98
    • Fenichel, N.1
  • 18
    • 29444450742 scopus 로고
    • Noise-induced front propagation in a bistable system
    • A. Engel Noise-induced front propagation in a bistable system Phys. Lett. A 113 3 1985 139 142
    • (1985) Phys. Lett. A , vol.113 , Issue.3 , pp. 139-142
    • Engel, A.1
  • 21
    • 33646410420 scopus 로고    scopus 로고
    • Rigorous asymptotic expansions for critical wave speeds in a family of scalar reaction-diffusion equations
    • N. Popović, and T. Kaper Rigorous asymptotic expansions for critical wave speeds in a family of scalar reaction-diffusion equations J. Dynam. Differential Equations 18 1 2006 103 139
    • (2006) J. Dynam. Differential Equations , vol.18 , Issue.1 , pp. 103-139
    • Popović, N.1    Kaper, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.