-
1
-
-
0003919106
-
-
Interdisciplinary Applied Mathematics Springer-Verlag New York
-
J. Keener, and J. Sneyd Mathematical Physiology Interdisciplinary Applied Mathematics vol. 8 1998 Springer-Verlag New York
-
(1998)
Mathematical Physiology
, vol.8 VOL.
-
-
Keener, J.1
Sneyd, J.2
-
2
-
-
35948990936
-
Effect of a cutoff on pushed and bistable fronts of the reaction-diffusion equation
-
R. Benguria, M. Depassier, and V. Haikala Effect of a cutoff on pushed and bistable fronts of the reaction-diffusion equation Phys. Rev. E 76 5 2007 051101
-
(2007)
Phys. Rev. e
, vol.76
, Issue.5
, pp. 051101
-
-
Benguria, R.1
Depassier, M.2
Haikala, V.3
-
3
-
-
77956095169
-
A geometric approach to bistable front propagation in scalar reaction-diffusion equations with cut-off
-
F. Dumortier, N. Popović, and T. Kaper A geometric approach to bistable front propagation in scalar reaction-diffusion equations with cut-off Physica D 239 20 2010 1984 1999
-
(2010)
Physica D
, vol.239
, Issue.20
, pp. 1984-1999
-
-
Dumortier, F.1
Popović, N.2
Kaper, T.3
-
4
-
-
79957927597
-
A geometric analysis of front propagation in a family of degenerate reaction-diffusion equations with cut-off
-
in press
-
N. Popović, A geometric analysis of front propagation in a family of degenerate reaction-diffusion equations with cut-off, Z. Angew. Math. Phys. (2011), in press (doi:10.1007/s00033-011-0115-6).
-
(2011)
Z. Angew. Math. Phys.
-
-
Popović, N.1
-
5
-
-
0001425072
-
Shift in the velocity of a front due to a cut-off
-
E. Brunet, and B. Derrida Shift in the velocity of a front due to a cut-off Phys. Rev. E 56 3 2007 2597 2604
-
(2007)
Phys. Rev. e
, vol.56
, Issue.3
, pp. 2597-2604
-
-
Brunet, E.1
Derrida, B.2
-
6
-
-
5844310074
-
Speed of fronts of the reaction-diffusion equation
-
R. Benguria, and M. Depassier Speed of fronts of the reaction-diffusion equation Phys. Rev. Lett. 77 6 1996 1171 1173
-
(1996)
Phys. Rev. Lett.
, vol.77
, Issue.6
, pp. 1171-1173
-
-
Benguria, R.1
Depassier, M.2
-
7
-
-
34347351922
-
Speed of pulled fronts with a cutoff
-
R. Benguria, and M. Depassier Speed of pulled fronts with a cutoff Phys. Rev. E 75 5 2007 051106
-
(2007)
Phys. Rev. e
, vol.75
, Issue.5
, pp. 051106
-
-
Benguria, R.1
Depassier, M.2
-
8
-
-
0001371280
-
Front propagation: Precursors, cutoffs, and structural stability
-
D. Kessler, Z. Ner, and L. Sander Front propagation: precursors, cutoffs, and structural stability Phys. Rev. E 58 1 1998 107 114
-
(1998)
Phys. Rev. e
, vol.58
, Issue.1
, pp. 107-114
-
-
Kessler, D.1
Ner, Z.2
Sander, L.3
-
9
-
-
28844462834
-
Variational principles and the shift in the front speed due to a cutoff
-
V. Méndez, D. Campos, and E. Zemskov Variational principles and the shift in the front speed due to a cutoff Phys. Rev. E 72 5 2005 056113
-
(2005)
Phys. Rev. e
, vol.72
, Issue.5
, pp. 056113
-
-
Méndez, V.1
Campos, D.2
Zemskov, E.3
-
10
-
-
33947384615
-
The critical wave speed for the Fisher-Kolmogorov-Petrowskii-Piscounov equation with cut-off
-
F. Dumortier, N. Popović, and T. Kaper The critical wave speed for the Fisher-Kolmogorov-Petrowskii-Piscounov equation with cut-off Nonlinearity 20 4 2007 855 877
-
(2007)
Nonlinearity
, vol.20
, Issue.4
, pp. 855-877
-
-
Dumortier, F.1
Popović, N.2
Kaper, T.3
-
11
-
-
0002336002
-
Techniques in the theory of local bifurcations: Blow-up, normal forms, nilpotent bifurcations, singular perturbations
-
D. Schlomiuk, NATO ASI Series C, Mathematical and Physical Sciences Kluwer Academic Publishers Dordrecht, The Netherlands
-
F. Dumortier Techniques in the theory of local bifurcations: blow-up, normal forms, nilpotent bifurcations, singular perturbations D. Schlomiuk, Bifurcations and Periodic Orbits of Vector Fields NATO ASI Series C, Mathematical and Physical Sciences vol. 408 1993 Kluwer Academic Publishers Dordrecht, The Netherlands 19 73
-
(1993)
Bifurcations and Periodic Orbits of Vector Fields
, vol.408 VOL.
, pp. 19-73
-
-
Dumortier, F.1
-
13
-
-
0036052772
-
Extending geometric singular perturbation theory to nonhyperbolic points - Fold and canard points in two dimensions
-
M. Krupa, and P. Szmolyan Extending geometric singular perturbation theory to nonhyperbolic points - fold and canard points in two dimensions SIAM J. Math. Anal. 33 2 2001 286 314
-
(2001)
SIAM J. Math. Anal.
, vol.33
, Issue.2
, pp. 286-314
-
-
Krupa, M.1
Szmolyan, P.2
-
15
-
-
0003698819
-
-
3rd Edition Texts in Applied Mathematics Springer-Verlag New York
-
L. Perko Differential Equations and Dynamical Systems 3rd Edition Texts in Applied Mathematics vol. 7 2001 Springer-Verlag New York
-
(2001)
Differential Equations and Dynamical Systems
, vol.7 VOL.
-
-
Perko, L.1
-
17
-
-
34250627892
-
Geometric singular perturbation theory for ordinary differential equations
-
N. Fenichel Geometric singular perturbation theory for ordinary differential equations J. Differential Equations 31 1 1979 53 98
-
(1979)
J. Differential Equations
, vol.31
, Issue.1
, pp. 53-98
-
-
Fenichel, N.1
-
18
-
-
29444450742
-
Noise-induced front propagation in a bistable system
-
A. Engel Noise-induced front propagation in a bistable system Phys. Lett. A 113 3 1985 139 142
-
(1985)
Phys. Lett. A
, vol.113
, Issue.3
, pp. 139-142
-
-
Engel, A.1
-
19
-
-
0004245694
-
-
Applied Mathematics Series Dover Publications New York
-
M. Abramowitz, and I. Stegun Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series vol. 55 1972 Dover Publications New York
-
(1972)
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards
, vol.55 VOL.
-
-
Abramowitz, M.1
Stegun, I.2
-
21
-
-
33646410420
-
Rigorous asymptotic expansions for critical wave speeds in a family of scalar reaction-diffusion equations
-
N. Popović, and T. Kaper Rigorous asymptotic expansions for critical wave speeds in a family of scalar reaction-diffusion equations J. Dynam. Differential Equations 18 1 2006 103 139
-
(2006)
J. Dynam. Differential Equations
, vol.18
, Issue.1
, pp. 103-139
-
-
Popović, N.1
Kaper, T.2
|