메뉴 건너뛰기




Volumn 24, Issue 2, 2011, Pages 269-274

Finding key attribute subset in dataset for outlier detection

Author keywords

Data mining; High dimensional dataset; Key attribute subset; Outlier detection; Outlying reduction

Indexed keywords

ANALYSIS SYSTEM; DATA SETS; EFFICIENT METHOD; HIGH-DIMENSIONAL DATASET; KEY ATTRIBUTES; NOVEL METHODS; OUTLIER DETECTION; OUTLYING REDUCTION; PRACTICAL USE; ROUGH SET; TIME CONSUMPTION;

EID: 78650805266     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2010.09.003     Document Type: Article
Times cited : (38)

References (24)
  • 1
    • 71749107907 scopus 로고    scopus 로고
    • A comparison of outlier detection algorithms for ITS data
    • Shuyan Chen, Wei Wang, and Henk van Zuylen A comparison of outlier detection algorithms for ITS data Expert Systems with Applications 37 2 2010 1169 1178
    • (2010) Expert Systems with Applications , vol.37 , Issue.2 , pp. 1169-1178
    • Chen, S.1    Wang, W.2    Van Zuylen, H.3
  • 2
    • 0019820854 scopus 로고
    • On the detection of outlier clinics in medical and surgical trials
    • Paul L. Canner, Y.B. Huang, and Curtis L. Meinert On the detection of outlier clinics in medical and surgical trials Controlled Clinical Trials 2 3 1981 231 240
    • (1981) Controlled Clinical Trials , vol.2 , Issue.3 , pp. 231-240
    • Canner, P.L.1    Huang, Y.B.2    Meinert, C.L.3
  • 3
    • 67650495303 scopus 로고    scopus 로고
    • Discovering unexpected documents in corpora
    • Franois Jacquenet, and Christine Largeron Discovering unexpected documents in corpora Knowledge-Based Systems 22 6 2009 421 429
    • (2009) Knowledge-Based Systems , vol.22 , Issue.6 , pp. 421-429
    • Jacquenet, F.1    Largeron, C.2
  • 5
    • 0035943940 scopus 로고    scopus 로고
    • The distribution of test statistics for outlier detection in heavy-tailed samples
    • S. Mittnik, S.T. Rachev, and G. Samorodnitsky The distribution of test statistics for outlier detection in heavy-tailed samples Mathematical and Computer Modelling 34 9-11 2001 1171 1183
    • (2001) Mathematical and Computer Modelling , vol.34 , Issue.911 , pp. 1171-1183
    • Mittnik, S.1    Rachev, S.T.2    Samorodnitsky, G.3
  • 6
    • 70349685347 scopus 로고    scopus 로고
    • A comparison of outlier detection algorithms for machine learning
    • H.J. Escalante A comparison of outlier detection algorithms for machine learning Programming and Computer Software 2005 228 237
    • (2005) Programming and Computer Software , pp. 228-237
    • Escalante, H.J.1
  • 7
    • 0002948319 scopus 로고    scopus 로고
    • Algorithms for mining distance-based outliers in large datasets
    • E. Knorr, R. Ng, Algorithms for mining distance-based outliers in large datasets, in: Proceedings of the 24th Conference on VLDB, 1998, pp. 392-403.
    • (1998) Proceedings of the 24th Conference on VLDB , pp. 392-403
    • Knorr, E.1    Ng, R.2
  • 9
    • 77953128244 scopus 로고    scopus 로고
    • Semi-supervised outlier detection based on fuzzy rough C-means clustering
    • Zhenxia Xue, Youlin Shang, and Aifen Feng Semi-supervised outlier detection based on fuzzy rough C-means clustering Mathematics and Computers in Simulation 80 9 2010 1911 1921
    • (2010) Mathematics and Computers in Simulation , vol.80 , Issue.9 , pp. 1911-1921
    • Xue, Z.1    Shang, Y.2    Feng, A.3
  • 10
    • 0012905555 scopus 로고    scopus 로고
    • Finding intensional knowledge of distance-based outliers
    • Edinburgh, Scotland
    • E. Knorr, R. Ng, Finding intensional knowledge of distance-based outliers, in: Proceedings of the 25th VLDB conference, Edinburgh, Scotland, 1999, pp. 211-222.
    • (1999) Proceedings of the 25th VLDB Conference , pp. 211-222
    • Knorr, E.1    Ng, R.2
  • 12
    • 36749021623 scopus 로고    scopus 로고
    • A genetic approach for efficient outlier detection in projected space
    • Sanghamitra Bandyopadhyay, and Santanu Santra A genetic approach for efficient outlier detection in projected space Pattern Recognition 41 4 2008 1338 1349
    • (2008) Pattern Recognition , vol.41 , Issue.4 , pp. 1338-1349
    • Bandyopadhyay, S.1    Santra, S.2
  • 14
    • 58349108846 scopus 로고    scopus 로고
    • Projected outlier detection in high-dimensional mixed-attributes data set
    • Mao Ye, Xue Li, and Maria E. Orlowska Projected outlier detection in high-dimensional mixed-attributes data set Expert Systems with Applications 36 3 2009 7104 7113
    • (2009) Expert Systems with Applications , vol.36 , Issue.3 , pp. 7104-7113
    • Ye, M.1    Li, X.2    Orlowska, M.E.3
  • 15
    • 34248165925 scopus 로고    scopus 로고
    • A rough sets based characteristic relation approach for dynamic attribute generalization in data mining
    • Tianrui Li, Da Ruan, Geert Wets, Jing Song, and Yang Xu A rough sets based characteristic relation approach for dynamic attribute generalization in data mining Knowledge-Based Systems 20 5 2007 485 494
    • (2007) Knowledge-Based Systems , vol.20 , Issue.5 , pp. 485-494
    • Li, T.1    Ruan, D.2    Wets, G.3    Song, J.4    Xu, Y.5
  • 16
    • 65849531452 scopus 로고    scopus 로고
    • A fast approach to attribute reduction in incomplete decision systems with tolerance relation-based rough sets
    • Zuqiang Meng, and Zhongzhi Shi A fast approach to attribute reduction in incomplete decision systems with tolerance relation-based rough sets Information Sciences 179 16 2009 2774 2793
    • (2009) Information Sciences , vol.179 , Issue.16 , pp. 2774-2793
    • Meng, Z.1    Shi, Z.2
  • 18
    • 45849092954 scopus 로고    scopus 로고
    • Attribute reduction in decision-theoretic rough set models
    • Yiyu Yao, and Yan Zhao Attribute reduction in decision-theoretic rough set models Information Sciences 178 2008 3356 3373
    • (2008) Information Sciences , vol.178 , pp. 3356-3373
    • Yao, Y.1    Zhao, Y.2
  • 19
    • 2442528339 scopus 로고    scopus 로고
    • Selecting informative features with fuzzy-rough sets and its application for complex systems monitoring
    • Q. Shen, and R. Jensen Selecting informative features with fuzzy-rough sets and its application for complex systems monitoring Pattern Recognition 37 2004 1351 1363
    • (2004) Pattern Recognition , vol.37 , pp. 1351-1363
    • Shen, Q.1    Jensen, R.2
  • 20
    • 32644440353 scopus 로고    scopus 로고
    • Information-preserving hybrid data reduction based on fuzzy-rough techniques
    • Q.H. Hu, D.R. Yu, and Z.X. Xie Information-preserving hybrid data reduction based on fuzzy-rough techniques Pattern Recognition Letters 27 2006 414 423
    • (2006) Pattern Recognition Letters , vol.27 , pp. 414-423
    • Hu, Q.H.1    Yu, D.R.2    Xie, Z.X.3
  • 23
    • 33749316703 scopus 로고    scopus 로고
    • Detecting outlying subspaces for high dimensional data: The new task, algorithms, and performance
    • Ji Zhang, and Hai Wang Detecting outlying subspaces for high dimensional data: the new task, algorithms, and performance Knowledge Information System 10 3 2006 333 355
    • (2006) Knowledge Information System , vol.10 , Issue.3 , pp. 333-355
    • Zhang, J.1    Wang, H.2
  • 24
    • 67649205496 scopus 로고    scopus 로고
    • Detecting outlying properties of exceptional objects
    • Fabrizio Angiulli, and Luigi Palopoli Detecting outlying properties of exceptional objects ACM Transactions on Database Systems 34 1 2009 1 62
    • (2009) ACM Transactions on Database Systems , vol.34 , Issue.1 , pp. 1-62
    • Angiulli, F.1    Palopoli, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.