메뉴 건너뛰기




Volumn 2015-January, Issue , 2015, Pages 1243-1249

A hybrid neural model for type classification of entity mentions

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; NATURAL LANGUAGE PROCESSING SYSTEMS; SEMANTICS;

EID: 84949765822     PISSN: 10450823     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (64)

References (32)
  • 1
    • 84872577736 scopus 로고    scopus 로고
    • Practical recommendations for gradient-based training of deep architectures
    • Yoshua Bengio. Practical recommendations for gradient-based training of deep architectures. In Neural Networks: Tricks of the Trade, pages 437-478. 2012.
    • (2012) Neural Networks: Tricks of the Trade , pp. 437-478
    • Bengio, Y.1
  • 2
    • 84904308637 scopus 로고    scopus 로고
    • Semantic parsing on freebase from question-answer pairs
    • Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing on freebase from question-answer pairs. In EMNLP '13, 2013.
    • (2013) EMNLP '13
    • Berant, J.1    Chou, A.2    Frostig, R.3    Liang, P.4
  • 3
    • 85120657179 scopus 로고    scopus 로고
    • Unsupervised learning of name structure from coreference data
    • Eugene Charniak. Unsupervised learning of name structure from coreference data. In NAACL, 2001.
    • (2001) NAACL
    • Charniak, E.1
  • 4
    • 84951272941 scopus 로고    scopus 로고
    • A fast and accurate dependency parser using neural networks
    • Danqi Chen and Christopher Manning. A fast and accurate dependency parser using neural networks. In EMNLP, 2014.
    • (2014) EMNLP
    • Chen, D.1    Manning, C.2
  • 5
    • 84949913155 scopus 로고    scopus 로고
    • Leveraging wikipedia characteristics for search and candidate generation in question answering
    • Jennifer Chu-Carroll and James Fan. Leveraging wikipedia characteristics for search and candidate generation in question answering. In AAAI, 2011.
    • (2011) AAAI
    • Chu-Carroll, J.1    Fan, J.2
  • 7
    • 33750684809 scopus 로고    scopus 로고
    • Factoid question answering over unstructured and structured web content
    • Silviu Cucerzan and Eugene Agichtein. Factoid question answering over unstructured and structured web content. In TREC, Volume 72, page 90, 2005.
    • (2005) TREC , vol.72 , pp. 90
    • Cucerzan, S.1    Agichtein, E.2
  • 8
    • 84906925853 scopus 로고    scopus 로고
    • Adaptive recursive neural network for target-dependent twitter sentiment classification
    • Li Dong, Furu Wei, Chuanqi Tan, Duyu Tang, Ming Zhou, and Ke Xu. Adaptive recursive neural network for target-dependent twitter sentiment classification. In ACL, pages 49-54, 2014.
    • (2014) ACL , pp. 49-54
    • Dong, L.1    Wei, F.2    Tan, C.3    Tang, D.4    Zhou, M.5    Xu, K.6
  • 9
    • 84949913156 scopus 로고    scopus 로고
    • Adaptive multi-compositionality for recursive neural models with applications to sentiment analysis
    • Li Dong, Furu Wei, Ming Zhou, and Ke Xu. Adaptive multi-compositionality for recursive neural models with applications to sentiment analysis. In AAAI, 2014.
    • (2014) AAAI
    • Dong, L.1    Wei, F.2    Zhou, M.3    Xu, K.4
  • 10
    • 84943769848 scopus 로고    scopus 로고
    • Question answering over freebase with multicolumn convolutional neural networks
    • Li Dong, Furu Wei, Ming Zhou, and Ke Xu. Question answering over freebase with multicolumn convolutional neural networks. In ACL, 2015.
    • (2015) ACL
    • Dong, L.1    Wei, F.2    Zhou, M.3    Xu, K.4
  • 11
    • 80052250414 scopus 로고    scopus 로고
    • Adaptive subgradient methods for online learning and stochastic optimization
    • John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic optimization. JMLR, 12:2121-2159, 2011.
    • (2011) JMLR , vol.12 , pp. 2121-2159
    • Duchi, J.1    Hazan, E.2    Singer, Y.3
  • 13
    • 84863393743 scopus 로고    scopus 로고
    • Structured generative models for unsupervised named-entity clustering
    • Micha Elsner, Eugene Charniak, and Mark Johnson. Structured generative models for unsupervised named-entity clustering. In NAACL, 2009.
    • (2009) NAACL
    • Elsner, M.1    Charniak, E.2    Johnson, M.3
  • 14
    • 80053288463 scopus 로고    scopus 로고
    • Identifying relations for open information extraction
    • July 27-31
    • Anthony Fader, Stephen Soderland, and Oren Etzioni. Identifying relations for open information extraction. In EMNLP '11, July 27-31 2011.
    • (2011) EMNLP '11
    • Fader, A.1    Soderland, S.2    Etzioni, O.3
  • 15
    • 50949133669 scopus 로고    scopus 로고
    • Liblinear: A library for large linear classification
    • June
    • Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. Liblinear: A library for large linear classification. JMLR, 9, June 2008.
    • (2008) JMLR , vol.9
    • Fan, R.-E.1    Chang, K.-W.2    Hsieh, C.-J.3    Wang, X.-R.4    Lin, C.-J.5
  • 16
    • 38049050319 scopus 로고    scopus 로고
    • Fine grained classification of named entities
    • Michael Fleischman and Eduard Hovy. Fine grained classification of named entities. In COLING '02, 2002.
    • (2002) COLING '02
    • Fleischman, M.1    Hovy, E.2
  • 17
    • 77956056624 scopus 로고    scopus 로고
    • Question classification using head words and their hypernyms
    • Zhiheng Huang, Marcus Thint, and Zengchang Qin. Question classification using head words and their hypernyms. In EMNLP, 2008.
    • (2008) EMNLP
    • Huang, Z.1    Thint, M.2    Qin, Z.3
  • 18
    • 33749563073 scopus 로고    scopus 로고
    • Training linear SVMS in linear time
    • Thorsten Joachims. Training linear SVMS in linear time. In SIGKDD, 2006.
    • (2006) SIGKDD
    • Joachims, T.1
  • 19
    • 1542370072 scopus 로고    scopus 로고
    • Learning question classifiers
    • Xin Li and Dan Roth. Learning question classifiers. In COLING, pages 1-7, 2002.
    • (2002) COLING , pp. 1-7
    • Li, X.1    Roth, D.2
  • 20
    • 9444291271 scopus 로고    scopus 로고
    • Identification and tracing of ambiguous names: Discriminative and generative approaches
    • X. Li, P. Morie, and D. Roth. Identification and tracing of ambiguous names: Discriminative and generative approaches. In AAAI, pages 419-424, 2004.
    • (2004) AAAI , pp. 419-424
    • Li, X.1    Morie, P.2    Roth, D.3
  • 21
    • 84876787835 scopus 로고    scopus 로고
    • No noun phrase left behind: Detecting and typing unlinkable entities
    • Thomas Lin, Oren Etzioni, et al. No noun phrase left behind: detecting and typing unlinkable entities. In EMNLP-CoNLL, 2012.
    • (2012) EMNLP-CoNLL
    • Lin, T.1    Etzioni, O.2
  • 22
    • 34247846152 scopus 로고    scopus 로고
    • An exploration of the principles underlying redundancy-based factoid question answering
    • April
    • Jimmy Lin. An exploration of the principles underlying redundancy-based factoid question answering. ACM Trans. Inf. Syst., 25(2), April 2007.
    • (2007) ACM Trans. Inf. Syst. , vol.25 , Issue.2
    • Lin, J.1
  • 23
    • 85114433408 scopus 로고    scopus 로고
    • Fine-grained entity recognition
    • X. Ling and D.S. Weld. Fine-grained entity recognition. In AAAI, 2012.
    • (2012) AAAI
    • Ling, X.1    Weld, D.S.2
  • 26
    • 84906933410 scopus 로고    scopus 로고
    • Fine-grained semantic typing of emerging entities
    • Ndapandula Nakashole, Tomasz Tylenda, and Gerhard Weikum. Fine-grained semantic typing of emerging entities. In ACL, 2013.
    • (2013) ACL
    • Nakashole, N.1    Tylenda, T.2    Weikum, G.3
  • 28
    • 84892982833 scopus 로고    scopus 로고
    • On the difficulty of training recurrent neural networks
    • Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural networks. In ICML, pages 1310-1318, 2013.
    • (2013) ICML , pp. 1310-1318
    • Pascanu, R.1    Mikolov, T.2    Bengio, Y.3
  • 29
    • 84949913160 scopus 로고    scopus 로고
    • Inducing fine-grained semantic classes via hierarchical and collective classification
    • Altaf Rahman and Vincent Ng. Inducing fine-grained semantic classes via hierarchical and collective classification. In COLING '10, 2010.
    • (2010) COLING '10
    • Rahman, A.1    Ng, V.2
  • 30
    • 0022471098 scopus 로고
    • Learning representations by backpropagating errors
    • D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning representations by backpropagating errors. Nature, 323 (6088), 1986.
    • (1986) Nature , vol.323 , Issue.6088
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 31
    • 80053495924 scopus 로고    scopus 로고
    • Word representations: A simple and general method for semi-supervised learning
    • Joseph Turian, Lev Ratinov, and Yoshua Bengio. Word representations: a simple and general method for semi-supervised learning. In ACL, 2010.
    • (2010) ACL
    • Turian, J.1    Ratinov, L.2    Bengio, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.