-
1
-
-
0037069924
-
GADD45-induced cell cycle G2-M arrest associates with altered subcellular distribution of cyclin B1 and is independent of p38 kinase activity
-
Jin S, Tong T, Fan W, Fan F, Antinore MJ, Zhu X, Mazzacurati L, Li X, Petrik KL, Rajasekaran B, Wu M, Zhan Q. GADD45-induced cell cycle G2-M arrest associates with altered subcellular distribution of cyclin B1 and is independent of p38 kinase activity. Oncogene. 2002; 21: 8696-8704.
-
(2002)
Oncogene
, vol.21
, pp. 8696-8704
-
-
Jin, S.1
Tong, T.2
Fan, W.3
Fan, F.4
Antinore, M.J.5
Zhu, X.6
Mazzacurati, L.7
Li, X.8
Petrik, K.L.9
Rajasekaran, B.10
Wu, M.11
Zhan, Q.12
-
2
-
-
77955408842
-
Non-small cell lung cancer
-
Ettinger DS, Akerley W, Bepler G, Blum MG, Chang A, Cheney RT, Chirieac LR, D’Amico TA, Demmy TL, Ganti AK, Govindan R, Grannis FW Jr, Jahan T, et al. Non-small cell lung cancer. J Natl Compr Canc Netw. 2010; 8: 740-801.
-
(2010)
J Natl Compr Canc Netw
, vol.8
, pp. 740-801
-
-
Ettinger, D.S.1
Akerley, W.2
Bepler, G.3
Blum, M.G.4
Chang, A.5
Cheney, R.T.6
Chirieac, L.R.7
D’Amico, T.A.8
Demmy, T.L.9
Ganti, A.K.10
Govindan, R.11
Grannis, F.W.12
Jahan, T.13
-
3
-
-
84934436555
-
Gadd45 in stress signaling, cell cycle control, and apoptosis
-
Salvador JM, Brown-Clay JD, Fornace AJ. Gadd45 in stress signaling, cell cycle control, and apoptosis. Adv Exp Med Biol. 2013; 793: 1-19.
-
(2013)
Adv Exp Med Biol
, vol.793
, pp. 1-19
-
-
Salvador, J.M.1
Brown-Clay, J.D.2
Fornace, A.J.3
-
4
-
-
22044442810
-
Gene therapy vectors containing CArG elements from the Egr1 gene are activated by neutron irradiation, cisplatin and doxorubicin
-
Greco O, Powell TM, Marples B, Joiner MC, Scott SD. Gene therapy vectors containing CArG elements from the Egr1 gene are activated by neutron irradiation, cisplatin and doxorubicin. Cancer Gene Ther. 2005; 12: 655-662.
-
(2005)
Cancer Gene Ther
, vol.12
, pp. 655-662
-
-
Greco, O.1
Powell, T.M.2
Marples, B.3
Joiner, M.C.4
Scott, S.D.5
-
5
-
-
0033529121
-
Association with Cdc2 and inhibition of Cdc2/Cyclin B1 kinase activity by the p53- regulated protein Gadd45
-
Zhan Q, Antinore MJ, Wang XW, Carrier F, Smith ML, Harris CC, Fornace AJ Jr. Association with Cdc2 and inhibition of Cdc2/Cyclin B1 kinase activity by the p53- regulated protein Gadd45. Oncogene. 1999; 18: 2892-2900.
-
(1999)
Oncogene
, vol.18
, pp. 2892-2900
-
-
Zhan, Q.1
Antinore, M.J.2
Wang, X.W.3
Carrier, F.4
Smith, M.L.5
Harris, C.C.6
Fornace, A.J.7
-
6
-
-
0032514967
-
A family of stress-inducible GADD45-like proteins mediate activation of the stressresponsive MTK1/MEKK4 MAPKKK
-
Takekawa M, Saito H. A family of stress-inducible GADD45-like proteins mediate activation of the stressresponsive MTK1/MEKK4 MAPKKK. Cell. 1998; 95: 521–530.
-
(1998)
Cell
, vol.95
, pp. 521-530
-
-
Takekawa, M.1
Saito, H.2
-
7
-
-
84874786609
-
Gadd45a suppresses tumor angiogenesis via inhibition of the mTOR/STAT3 protein pathway
-
Yang F, Zhang W, Li D, Zhan Q. Gadd45a suppresses tumor angiogenesis via inhibition of the mTOR/STAT3 protein pathway. J Biol Chem. 2013; 288: 6552-6560.
-
(2013)
J Biol Chem
, vol.288
, pp. 6552-6560
-
-
Yang, F.1
Zhang, W.2
Li, D.3
Zhan, Q.4
-
8
-
-
33745589509
-
Down-regulation of Gadd45 expression is associated with tumor differentiation in non-small cell lung cancer
-
Higashi H, Vallbohmer D, Warnecke-Eberz U, Hokita S, Xi H, Brabender J, Metzger R, Baldus SE, Natsuqoe S, Aikou T, Holscher AH, Schneider PM. Down-regulation of Gadd45 expression is associated with tumor differentiation in non-small cell lung cancer. Anticancer Res. 2006; 25: 2143-2147.
-
(2006)
Anticancer Res
, vol.25
, pp. 2143-2147
-
-
Higashi, H.1
Vallbohmer, D.2
Warnecke-Eberz, U.3
Hokita, S.4
Xi, H.5
Brabender, J.6
Metzger, R.7
Baldus, S.E.8
Natsuqoe, S.9
Aikou, T.10
Holscher, A.H.11
Schneider, P.M.12
-
9
-
-
43249116904
-
Decitabine-induced demethylation of 5’ CpG island in GADD45A leads to apoptosis in osteosarcoma cells
-
Al-Romaih K, Sadikovic B, Yoshimoto M, Wang Y, Zielenska M, Squire JA. Decitabine-induced demethylation of 5’ CpG island in GADD45A leads to apoptosis in osteosarcoma cells. Neoplasia. 2008; 10: 471-480.
-
(2008)
Neoplasia
, vol.10
, pp. 471-480
-
-
Al-Romaih, K.1
Sadikovic, B.2
Yoshimoto, M.3
Wang, Y.4
Zielenska, M.5
Squire, J.A.6
-
10
-
-
25144508812
-
GADD45 deregulation in cancer: Frequently methylated tumor suppressors and potential therapeutic targets
-
Zerbini LF, Libermann TA. GADD45 deregulation in cancer: frequently methylated tumor suppressors and potential therapeutic targets. Clin Cancer Res. 2005; 11: 6409–6413.
-
(2005)
Clin Cancer Res
, vol.11
, pp. 6409-6413
-
-
Zerbini, L.F.1
Libermann, T.A.2
-
12
-
-
21044444012
-
Gadd45a expression induces Bim dissociation from the cytoskeleton and translocation to mitochondria
-
Tong T, Ji J, Jin S, Li X, Fan W, Song Y, Wang M, Liu Z, Wu M, Zhan Q. Gadd45a expression induces Bim dissociation from the cytoskeleton and translocation to mitochondria. Mol Cell Biol. 2005; 25: 4488–4500.
-
(2005)
Mol Cell Biol
, vol.25
, pp. 4488-4500
-
-
Tong, T.1
Ji, J.2
Jin, S.3
Li, X.4
Fan, W.5
Song, Y.6
Wang, M.7
Liu, Z.8
Wu, M.9
Zhan, Q.10
-
13
-
-
0025317094
-
Identification and characterization of the Egr-1 gene product, a DNA-binding zinc finger protein induced by differentiation and growth signals
-
Cao XM, Koski RA, Gashler A, McKiernan M, Morris CF, Gaffney R, Hay RV, Sukhatme VP. Identification and characterization of the Egr-1 gene product, a DNA-binding zinc finger protein induced by differentiation and growth signals. Mol Cell Biol. 1990; 10: 1931-1939.
-
(1990)
Mol Cell Biol
, vol.10
, pp. 1931-1939
-
-
Cao, X.M.1
Koski, R.A.2
Gashler, A.3
McKiernan, M.4
Morris, C.F.5
Gaffney, R.6
Hay, R.V.7
Sukhatme, V.P.8
-
14
-
-
0024281381
-
A zinc finger-encoding gene coregulated with c-fos during growth and differentiation, and after cellular depolarization
-
Sukhatme VP, Cao XM, Chang LC, Tsai-Morris CH, Stamenkovich D, Ferreira PC, Cohen DR, Edwards SA, Shows TB, Curran T, Beau MM, Adamson ED. A zinc finger-encoding gene coregulated with c-fos during growth and differentiation, and after cellular depolarization. Cell. 1988; 53: 37-43.
-
(1988)
Cell
, vol.53
, pp. 37-43
-
-
Sukhatme, V.P.1
Cao, X.M.2
Chang, L.C.3
Tsai-Morris, C.H.4
Stamenkovich, D.5
Ferreira, P.C.6
Cohen, D.R.7
Edwards, S.A.8
Shows, T.B.9
Curran, T.10
Beau, M.M.11
Adamson, E.D.12
-
15
-
-
0026452858
-
Ionizing radiation activates transcription of the EGR1 gene via CArG elements
-
Datta R, Rubin E, Sukhatme V, Qureshi S, Hallahan D, Weichselbaum RR, Kufe DW. Ionizing radiation activates transcription of the EGR1 gene via CArG elements. Proc Natl Acad Sci U S A. 1992; 89: 10149-10153.
-
(1992)
Proc Natl Acad Sci U S A
, vol.89
, pp. 10149-10153
-
-
Datta, R.1
Rubin, E.2
Sukhatme, V.3
Qureshi, S.4
Hallahan, D.5
Weichselbaum, R.R.6
Kufe, D.W.7
-
16
-
-
0031458309
-
Egr-1 is activated in endothelial cells exposed to fluid shear stress and interacts with a novel shear-stress-response element in the PDGF A-chain promoter
-
Khachigian LM, Anderson KR, Halnon NJ, Gimbrone MA Jr, Resnick N, Collins T. Egr-1 is activated in endothelial cells exposed to fluid shear stress and interacts with a novel shear-stress-response element in the PDGF A-chain promoter. Arterioscler Thromb Vasc Biol. 1997; 17: 2280-2286.
-
(1997)
Arterioscler Thromb Vasc Biol
, vol.17
, pp. 2280-2286
-
-
Khachigian, L.M.1
Erson, K.R.2
Halnon, N.J.3
Gimbrone, M.A.4
Resnick, N.5
Collins, T.6
-
17
-
-
84903514037
-
Sequential activation of Elk-1/Egr-1/GADD45α by arsenic
-
Shi Q, Sutariya V, Bishayee A, Bhatia D. Sequential activation of Elk-1/Egr-1/GADD45α by arsenic. Oncotarget. 2014; 5: 3862-3870.
-
(2014)
Oncotarget
, vol.5
, pp. 3862-3870
-
-
Shi, Q.1
Sutariya, V.2
Bishayee, A.3
Bhatia, D.4
-
18
-
-
0029559345
-
Activation of the radiosensitive EGR-1 promoter induces expression of the herpes simplex virus thymidine kinase gene and sensitivity of human glioma cells to ganciclovir
-
Joki T, Nakamura M, Ohno T. Activation of the radiosensitive EGR-1 promoter induces expression of the herpes simplex virus thymidine kinase gene and sensitivity of human glioma cells to ganciclovir. Hum Gene Ther. 1995; 6: 1507-1513.
-
(1995)
Hum Gene Ther
, vol.6
, pp. 1507-1513
-
-
Joki, T.1
Nakamura, M.2
Ohno, T.3
-
19
-
-
4644222753
-
-
Lopez CA, Kimchi ET, Mauceri HJ, Park JO, Mehta N, Murphy KT, Beckett MA, Hellman S, Posner MC, Kufe DW, Weichselbaum RR. Mol Cancer Ther. 2004; 3: 1167-1175.
-
(2004)
Mol Cancer Ther
, vol.3
, pp. 1167-1175
-
-
Lopez, C.A.1
Kimchi, E.T.2
Mauceri, H.J.3
Park, J.O.4
Mehta, N.5
Murphy, K.T.6
Beckett, M.A.7
Hellman, S.8
Posner, M.C.9
Kufe, D.W.10
Weichselbaum, R.R.11
-
20
-
-
0036773207
-
Optimizing radiationresponsive gene promoters for radiogenetic cancer therapy
-
Scott SD, Joiner MC, Marples B. Optimizing radiationresponsive gene promoters for radiogenetic cancer therapy. Gene Ther. 2002; 9: 1396-1402.
-
(2002)
Gene Ther
, vol.9
, pp. 1396-1402
-
-
Scott, S.D.1
Joiner, M.C.2
Marples, B.3
-
22
-
-
0027963649
-
Gene therapy targeted by radiation preferentially radiosensitizes tumor cells
-
Weichselbaum RR, Hallahan DE, Beckett MA, Mauceri HJ, Lee H, Sukhatme VP, Kufe DW. Gene therapy targeted by radiation preferentially radiosensitizes tumor cells. Cancer Res. 1994; 54: 4266-4269.
-
(1994)
Cancer Res
, vol.54
, pp. 4266-4269
-
-
Weichselbaum, R.R.1
Hallahan, D.E.2
Beckett, M.A.3
Mauceri, H.J.4
Lee, H.5
Sukhatme, V.P.6
Kufe, D.W.7
-
23
-
-
67349128956
-
Multiple molecular targets of resveratrol: Anti-carcinogenic mechanisms
-
Athar M, Back JH, Kopelovich L, Bickers DR, Kim AL. Multiple molecular targets of resveratrol: anti-carcinogenic mechanisms. Arch Biochem Biophys 2009; 486: 95–102.
-
(2009)
Arch Biochem Biophys
, vol.486
, pp. 95-102
-
-
Athar, M.1
Back, J.H.2
Kopelovich, L.3
Bickers, D.R.4
Kim, A.L.5
-
24
-
-
22844450866
-
Resveratrol as an anticancer nutrient: Molecular basis, open questions and promises
-
Signorelli P, Ghidoni R. Resveratrol as an anticancer nutrient: molecular basis, open questions and promises. J Nutr Biochem. 2005; 16: 449-466.
-
(2005)
J Nutr Biochem
, vol.16
, pp. 449-466
-
-
Signorelli, P.1
Ghidoni, R.2
-
25
-
-
39049105748
-
Resveratrol is an effective inducer of CArG-driven TNF-α gene therapy
-
Bickenbach KA, Veerapong J, Shao MY, Mauceri HJ, Posner MC, Kron SJ, Weichselbaum RR. Resveratrol is an effective inducer of CArG-driven TNF-α gene therapy. Cancer Gene Therapy. 2008; 15: 133-139.
-
(2008)
Cancer Gene Therapy
, vol.15
, pp. 133-139
-
-
Bickenbach, K.A.1
Veerapong, J.2
Shao, M.Y.3
Mauceri, H.J.4
Posner, M.C.5
Kron, S.J.6
Weichselbaum, R.R.7
-
27
-
-
78650822083
-
Resveratrol-induced apoptosis is mediated by early growth response-1, Krüppel-like factor 4, and activating transcription factor 3
-
Whitlock NC, Bahn JH, Lee SH, Eling TE, Baek SJ. Resveratrol-induced apoptosis is mediated by early growth response-1, Krüppel-like factor 4, and activating transcription factor 3. Cancer Prev Res (Phila). 2011; 4: 116-127.
-
(2011)
Cancer Prev Res (Phila)
, vol.4
, pp. 116-127
-
-
Whitlock, N.C.1
Bahn, J.H.2
Lee, S.H.3
Eling, T.E.4
Baek, S.J.5
-
28
-
-
0029125757
-
Integration of MAP kinase signal transduction pathways at the serum response element
-
Whitmarsh AJ, Shore P, Sharrocks AD, Davis RJ. Integration of MAP kinase signal transduction pathways at the serum response element. Science. 1995; 269: 403-407.
-
(1995)
Science
, vol.269
, pp. 403-407
-
-
Whitmarsh, A.J.1
Shore, P.2
Sharrocks, A.D.3
Davis, R.J.4
-
29
-
-
0036962164
-
Resveratrol induces apoptosis in thyroid cancer cell lines via a MAPK- and p53-dependent mechanism
-
Shih A, Davis FB, Lin HY, Davis PJ. Resveratrol induces apoptosis in thyroid cancer cell lines via a MAPK- and p53-dependent mechanism. J Clin Endocrinol Metab. 2002; 87: 1223-1232.
-
(2002)
J Clin Endocrinol Metab
, vol.87
, pp. 1223-1232
-
-
Shih, A.1
Davis, F.B.2
Lin, H.Y.3
Davis, P.J.4
-
30
-
-
0035866404
-
Resveratrol-induced activation of p53 and apoptosis is mediated by extracellular-signal-regulated protein kinases and p38 kinase
-
She QB, Bode AM, Ma WY, Chen NY, Dong Z. Resveratrol-induced activation of p53 and apoptosis is mediated by extracellular-signal-regulated protein kinases and p38 kinase. Cancer Res. 2001; 61: 1604-1610.
-
(2001)
Cancer Res
, vol.61
, pp. 1604-1610
-
-
She, Q.B.1
Bode, A.M.2
Ma, W.Y.3
Chen, N.Y.4
Dong, Z.5
-
31
-
-
84868645464
-
Transcriptional regulation of EGR1 by EGF and the ERK signaling pathway in prostate cancer cells
-
Gregg J, Fraizer G. Transcriptional regulation of EGR1 by EGF and the ERK signaling pathway in prostate cancer cells. Genes Cancer. 2011; 2: 900-909.
-
(2011)
Genes Cancer
, vol.2
, pp. 900-909
-
-
Gregg, J.1
Fraizer, G.2
-
32
-
-
13244265558
-
NF-kappaB/Egr-1/Gadd45 are sequentially activated upon UVB irradiation to mediate epidermal cell death
-
Thyss R, Virolle V, Imbert V, Peyron JF, Aberdam D, Virolle T. NF-kappaB/Egr-1/Gadd45 are sequentially activated upon UVB irradiation to mediate epidermal cell death. EMBO J. 2005; 24: 128-137.
-
(2005)
EMBO J
, vol.24
, pp. 128-137
-
-
Thyss, R.1
Virolle, V.2
Imbert, V.3
Peyron, J.F.4
Aberdam, D.5
Virolle, T.6
-
33
-
-
0344406281
-
The egr-1 gene is induced by DNA-damaging agents and non-genotoxic drugs in both normal and neoplastic human cells
-
Quiñones A, Dobberstein KU, Rainov NG. The egr-1 gene is induced by DNA-damaging agents and non-genotoxic drugs in both normal and neoplastic human cells. Life Sci. 2003; 72: 2975-2992.
-
(2003)
Life Sci
, vol.72
, pp. 2975-2992
-
-
Quiñones, A.1
Dobberstein, K.U.2
Rainov, N.G.3
-
34
-
-
0033569918
-
Stress-induced JNK activation is independent of Gadd45 induction
-
Shaulian E, Karin M. Stress-induced JNK activation is independent of Gadd45 induction. J Biol Chem. 1999; 274: 29595-29598.
-
(1999)
J Biol Chem
, vol.274
, pp. 29595-29598
-
-
Shaulian, E.1
Karin, M.2
-
35
-
-
0344604528
-
Genomic instability in Gadd45adeficient mice
-
Hollander MC, Sheikh MS, Bulavin DV, Lundgren K, Augeri-Henmueller L, Shehee R, Molinaro TA, Kim KE, Tolosa E, Ashwell JD, Rosenberg MP, Zhan Q, Fernández- Salguero PM, et al. Genomic instability in Gadd45adeficient mice. Nat Genet. 1999; 23: 176-184.
-
(1999)
Nat Genet
, vol.23
, pp. 176-184
-
-
Hollander, M.C.1
Sheikh, M.S.2
Bulavin, D.V.3
Lundgren, K.4
Augeri-Henmueller, L.5
Shehee, R.6
Molinaro, T.A.7
Kim, K.E.8
Tolosa, E.9
Ashwell, J.D.10
Rosenberg, M.P.11
Zhan, Q.12
Fernández- Salguero, P.M.13
-
36
-
-
0035866787
-
Dimethylbenzanthracene carcinogenesis in Gadd45a-null mice is associated with decreased DNA repair andincreased mutation frequency
-
Hollander MC, Kovalsky O, Salvador JM, Kim KE, Patterson AD, Haines DC, Fornace AJ . Dimethylbenzanthracene carcinogenesis in Gadd45a-null mice is associated with decreased DNA repair andincreased mutation frequency. Cancer Res. 2001; 61: 2487-2491.
-
(2001)
Cancer Res
, vol.61
, pp. 2487-2491
-
-
Hollander, M.C.1
Kovalsky, O.2
Salvador, J.M.3
Kim, K.E.4
Patterson, A.D.5
Haines, D.C.6
Fornace, A.J.7
-
37
-
-
59449098863
-
Adenoviral-mediated gene transfer of Gadd45a results in suppression by inducing apoptosis and cell cycle arrest in pancreatic cancer cell
-
Li Y, Qian H, Li X, Wang H, Yu J, Liu Y, Zhang X, Liang X, Fu M, Zhan Q, Lin C. Adenoviral-mediated gene transfer of Gadd45a results in suppression by inducing apoptosis and cell cycle arrest in pancreatic cancer cell. J Gene Med. 2009; 11: 3-13.
-
(2009)
J Gene Med
, vol.11
, pp. 3-13
-
-
Li, Y.1
Qian, H.2
Li, X.3
Wang, H.4
Yu, J.5
Liu, Y.6
Zhang, X.7
Liang, X.8
Fu, M.9
Zhan, Q.10
Lin, C.11
-
39
-
-
0042520999
-
Zappia V. P21Cip1 gene expression is modulated by Egr1: A novel regulatory mechanism involved in the resveratrol antiproliferative effect
-
Ragione FD, Cucciolla V, Criniti V, Indaco S, Borriello A, Zappia V. p21Cip1 gene expression is modulated by Egr1: a novel regulatory mechanism involved in the resveratrol antiproliferative effect. J Biol Chem. 2003; 278: 23360-23368.
-
(2003)
J Biol Chem
, vol.278
, pp. 23360-23368
-
-
Ragione, F.D.1
Cucciolla, V.2
Criniti, V.3
Indaco, S.4
Borriello, A.5
-
40
-
-
79958120468
-
GADD45α and annexin A1 are involved in the apoptosis of HL-60 induced by resveratrol
-
Li G, He S, Chang L, Lu H, Zhang H, Zhang H, Chiu J. GADD45α and annexin A1 are involved in the apoptosis of HL-60 induced by resveratrol. Phytomedicine. 2011; 18: 704-709.
-
(2011)
Phytomedicine
, vol.18
, pp. 704-709
-
-
Li, G.1
He, S.2
Chang, L.3
Lu, H.4
Zhang, H.5
Zhang, H.6
Chiu, J.7
-
41
-
-
67651115664
-
Translation of the radio- and chemo-inducible TNFerade vector to the treatment of human cancers
-
Weichselbaum RR, Kufe D. Translation of the radio- and chemo-inducible TNFerade vector to the treatment of human cancers. Cancer Gene Ther. 2009; 16: 609-619.
-
(2009)
Cancer Gene Ther
, vol.16
, pp. 609-619
-
-
Weichselbaum, R.R.1
Kufe, D.2
-
42
-
-
0042807479
-
Combined radiation and cytochrome CYP4B1/4-ipomeanol gene therapy using the EGR1 promoter
-
Hsu H, Rainov NG, Quinones A, Eling DJ, Sakamoto KM, Spear MA. Combined radiation and cytochrome CYP4B1/4-ipomeanol gene therapy using the EGR1 promoter. Anticancer Res. 2003; 23: 2723-2728.
-
(2003)
Anticancer Res
, vol.23
, pp. 2723-2728
-
-
Hsu, H.1
Rainov, N.G.2
Quinones, A.3
Eling, D.J.4
Sakamoto, K.M.5
Spear, M.A.6
|