메뉴 건너뛰기




Volumn 14, Issue 2, 2005, Pages 485-504

Generalized nonparametric mixed-effect models: Computation and smoothing parameter selection

Author keywords

Cross validation; Longitudinal data; Non Gaussian regression; Penalized likelihood; Smoothing spline

Indexed keywords


EID: 20744451865     PISSN: 10618600     EISSN: None     Source Type: Journal    
DOI: 10.1198/106186005X47651     Document Type: Article
Times cited : (28)

References (25)
  • 4
    • 0000506506 scopus 로고
    • Penalized likelihood regression: A bayesian analysis
    • Gu, C. (1992b), "Penalized Likelihood Regression: A Bayesian Analysis," Statistica Sinica, 2, 255-264.
    • (1992) Statistica Sinica , vol.2 , pp. 255-264
    • Gu, C.1
  • 6
    • 13244271406 scopus 로고    scopus 로고
    • Model diagnostics for smoothing spline ANOVA models
    • _ (2004), "Model Diagnostics for Smoothing Spline ANOVA Models," Canadian Journal of Statistics, 32, 347-358.
    • (2004) Canadian Journal of Statistics , vol.32 , pp. 347-358
  • 7
    • 0036975172 scopus 로고    scopus 로고
    • Penalized likelihood regression: General formulation and efficient approximation
    • Gu, C., and Kim, Y.-J. (2002), "Penalized Likelihood Regression: General Formulation and Efficient Approximation," Canadian Journal of Statistics, 30, 619-628.
    • (2002) Canadian Journal of Statistics , vol.30 , pp. 619-628
    • Gu, C.1    Kim, Y.-J.2
  • 8
    • 23744488295 scopus 로고    scopus 로고
    • Optimal smoothing in nonparametric mixed-effect models
    • in press
    • Gu, C., and Ma, P. (in press), "Optimal Smoothing in Nonparametric Mixed-Effect Models," The Annals of Statistics, 33.
    • The Annals of Statistics , vol.33
    • Gu, C.1    Ma, P.2
  • 9
    • 0141796394 scopus 로고    scopus 로고
    • Penalized likelihood density estimation: Direct cross validation and scalable approximation
    • Gu, C., and Wang, J. (2003), "Penalized Likelihood Density Estimation: Direct Cross Validation and Scalable Approximation," Statistica Sinica, 13, 811-826.
    • (2003) Statistica Sinica , vol.13 , pp. 811-826
    • Gu, C.1    Wang, J.2
  • 10
    • 0035622815 scopus 로고    scopus 로고
    • Cross-validating non-Gaussian data: Generalized approximate cross-validation revisited
    • Gu, C., and Xiang, D. (2001), "Cross-Validating non-Gaussian Data: Generalized Approximate Cross-Validation Revisited," Journal of Computational and Graphical Statistics, 10, 581-591.
    • (2001) Journal of Computational and Graphical Statistics , vol.10 , pp. 581-591
    • Gu, C.1    Xiang, D.2
  • 15
    • 2442486641 scopus 로고    scopus 로고
    • Smoothing spline gaussian regression: More scalable computation via efficient approximation
    • Kim, Y.-J., and Gu, C. (2004), "Smoothing Spline Gaussian Regression: More Scalable Computation via Efficient Approximation," Journal of the Royal Statistical Society, Ser. B, 66, 337-356.
    • (2004) Journal of the Royal Statistical Society, Ser. B , vol.66 , pp. 337-356
    • Kim, Y.-J.1    Gu, C.2
  • 17
    • 0033475436 scopus 로고    scopus 로고
    • Inference in generalized additive mixed models by using smoothing splines
    • Lin, X., and Zhang, D. (1999), "Inference in Generalized Additive Mixed Models by Using Smoothing Splines," Journal of the Royal Statistical Society, Ser. B, 61, 381-400.
    • (1999) Journal of the Royal Statistical Society, Ser. B , vol.61 , pp. 381-400
    • Lin, X.1    Zhang, D.2
  • 19
    • 0031479575 scopus 로고    scopus 로고
    • Maximum likelihood algorithms for generalized linear mixed models
    • McCulloch, C. E. (1997), "Maximum Likelihood Algorithms for Generalized Linear Mixed Models," Journal of the American Statistical Association, 92, 162-170.
    • (1997) Journal of the American Statistical Association , vol.92 , pp. 162-170
    • McCulloch, C.E.1
  • 20
    • 0025172155 scopus 로고
    • Some covariance models for longitudinal count data with overdispersion
    • Thall, P. F., and Vail, S. C. (1990), "Some Covariance Models for Longitudinal Count Data With Overdispersion," Biometrics, 46, 657-671.
    • (1990) Biometrics , vol.46 , pp. 657-671
    • Thall, P.F.1    Vail, S.C.2
  • 21
    • 0000450226 scopus 로고
    • Improper priors, spline smoothing and the problem of guarding against model errors in regression
    • Wahba, G. (1978), "Improper Priors, Spline Smoothing and the Problem of Guarding Against Model Errors in Regression," Journal of the Royal Statistical Society, Ser. B, 40, 364-372.
    • (1978) Journal of the Royal Statistical Society, Ser. B , vol.40 , pp. 364-372
    • Wahba, G.1
  • 22
    • 0000939344 scopus 로고
    • Bayesian 'confidence intervals' for the cross-validated smoothing spline
    • _ (1983), "Bayesian 'Confidence Intervals' for the Cross-Validated Smoothing Spline," Journal of the Royal Statistical Society, Ser. B, 45, 133-150.
    • (1983) Journal of the Royal Statistical Society, Ser. B , vol.45 , pp. 133-150
  • 23
    • 0000608177 scopus 로고
    • A comparison of GCV and GML for choosing the smoothing parameter in the generalized spline smoothing problem
    • _ (1985), "A Comparison of GCV and GML for Choosing the Smoothing Parameter in the Generalized Spline Smoothing Problem," The Annals of Statistics, 13, 1378-1402.
    • (1985) The Annals of Statistics , vol.13 , pp. 1378-1402
  • 24
    • 21444449622 scopus 로고    scopus 로고
    • A generalized approximate cross validation for smoothing splines with non-Gaussian data
    • Xiang, D., and Wahba, G. (1996), "A Generalized Approximate Cross Validation for Smoothing Splines With non-Gaussian Data," Statistica Sinica, 6, 675-692.
    • (1996) Statistica Sinica , vol.6 , pp. 675-692
    • Xiang, D.1    Wahba, G.2
  • 25
    • 84910906566 scopus 로고
    • Generalized linear models with random effects: A gibbs sampling approach
    • Zeger, S. L., and Karim, M. R. (1991), "Generalized Linear Models with Random Effects: A Gibbs Sampling Approach," Journal of the American Statistical Association, 86, 79-86.
    • (1991) Journal of the American Statistical Association , vol.86 , pp. 79-86
    • Zeger, S.L.1    Karim, M.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.