메뉴 건너뛰기




Volumn 102, Issue 3, 2015, Pages 631-645

Efficient computation of smoothing splines via adaptive basis sampling

Author keywords

Bayesian confidence interval; Core mantle boundary; Nonparametric regression; Penalized least squares; Reproducing kernel Hilbert space; Sampling

Indexed keywords


EID: 84941730377     PISSN: 00063444     EISSN: 14643510     Source Type: Journal    
DOI: 10.1093/biomet/asv009     Document Type: Article
Times cited : (34)

References (36)
  • 1
    • 69249171674 scopus 로고    scopus 로고
    • Asymptotic properties of penalized spline estimators
    • CLAESKENS, G., KRIVOBOKOVA, T. & OPSOMER, J. D. (2009). Asymptotic properties of penalized spline estimators. Biometrika 96, 529-44.
    • (2009) Biometrika , vol.96 , pp. 529-544
    • Claeskens, G.1    Krivobokova, T.2    Opsomer, J.D.3
  • 3
    • 34250263445 scopus 로고
    • Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross-validation
    • CRAVEN, P.&WAHBA, G. (1979). Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross-validation. Numer. Math. 31, 377-403.
    • (1979) Numer. Math. , vol.31 , pp. 377-403
    • Craven, P.1    Wahba, G.2
  • 5
    • 0041958932 scopus 로고
    • Ideal spatial adaptation by wavelet shrinkage
    • DONOHO, D. L. & JOHNSTONE, I. M. (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika 81, 425-55.
    • (1994) Biometrika , vol.81 , pp. 425-455
    • Donoho, D.L.1    Johnstone, I.M.2
  • 6
    • 0001935440 scopus 로고
    • Splines minimizing rotation-invariant semi-norms in Sobolev spaces
    • Eds. W. Schempp & K. Zeller. Berlin: Springer-Verlag
    • DUCHON, J. (1977). Splines minimizing rotation-invariant semi-norms in Sobolev spaces. In Constructive Theory of Functions of Several Variables, Eds. W. Schempp & K. Zeller. Berlin: Springer-Verlag, pp. 85-100.
    • (1977) Constructive Theory of Functions of Several Variables , pp. 85-100
    • Duchon, J.1
  • 7
    • 0004236492 scopus 로고
    • Baltimore, MD: The Johns Hopkins University Press, 2nd ed
    • GOLUB, G. & VAN LOAN, C. (1989). Matrix Computations. Baltimore, MD: The Johns Hopkins University Press, 2nd ed.
    • (1989) Matrix Computations
    • Golub, G.1    Van Loan, C.2
  • 8
    • 0003965801 scopus 로고    scopus 로고
    • New York: Springer, 2nd ed
    • GU, C. (2013). Smoothing Spline ANOVA Models. New York: Springer, 2nd ed.
    • (2013) Smoothing Spline ANOVA Models
  • 9
    • 0036975172 scopus 로고    scopus 로고
    • Penalized likelihood regression: General formulation and efficient approximation
    • GU, C. & KIM, Y.-J. (2002). Penalized likelihood regression: General formulation and efficient approximation. Can. J. Statist. 30, 619-28.
    • (2002) Can. J. Statist. , vol.30 , pp. 619-628
  • 10
    • 0000648694 scopus 로고
    • Penalized likelihood regression: A simple asymptotic analysis
    • GU, C. & QIU, C. (1994). Penalized likelihood regression: A simple asymptotic analysis. Statist. Sinica 4, 297-304.
    • (1994) Statist. Sinica , vol.4 , pp. 297-304
  • 12
    • 2442486641 scopus 로고    scopus 로고
    • Smoothing spline Gaussian regression: More scalable computation via efficient approximation
    • KIM, Y.-J. & GU, C. (2004). Smoothing spline Gaussian regression: more scalable computation via efficient approximation. J. R. Statist. Soc. B 66, 337-56.
    • (2004) J. R. Statist. Soc. B , vol.66 , pp. 337-356
    • Kim, Y.-J.1
  • 13
    • 84945116550 scopus 로고
    • Sliced inverse regression for dimension reduction
    • LI, K. C. (1991). Sliced inverse regression for dimension reduction. J. Am. Statist. Assoc. 86, 316-27.
    • (1991) J. Am. Statist. Assoc. , vol.86 , pp. 316-327
  • 14
    • 70450277253 scopus 로고    scopus 로고
    • The nonparanormal: Semiparametric estimation of high dimensional undirected graphs
    • LIU, H., LAFFERTY, J. &WASSERMAN, L. (2009). The nonparanormal: Semiparametric estimation of high dimensional undirected graphs. J. Mach. Learn. Res. 10, 2295-28.
    • (2009) J. Mach. Learn. Res. , vol.10 , pp. 2295-2328
    • Liu, H.1    Lafferty, J.2    Wasserman, L.3
  • 15
    • 78349252072 scopus 로고    scopus 로고
    • Data driven adaptive spline smoothing
    • LIU, Z. & GUO, W. (2010). Data driven adaptive spline smoothing. Statist. Sinica 20, 1143-63.
    • (2010) Statist. Sinica , vol.20 , pp. 1143-1163
    • Liu, Z.1    Guo, W.2
  • 16
  • 17
    • 35348912573 scopus 로고    scopus 로고
    • Imaging of structure at and near the core-mantle boundary using a generalized Radon transform: 2 Statistical inference of singularities
    • MA, P., WANG, P., TENORIO, L., DE HOOP, M. V. & VAN DER HILST, R. D. (2007). Imaging of structure at and near the core-mantle boundary using a generalized Radon transform: 2. Statistical inference of singularities. J. Geophys. Res. 112, B08303.
    • (2007) J. Geophys. Res. , vol.112 , pp. B08303
    • Ma, P.1    Wang, P.2    Tenorio, L.3    De Hoop, M.V.4    Van Der Hilst, R.D.5
  • 18
    • 33644977319 scopus 로고    scopus 로고
    • Spatially adaptive smoothing splines
    • PINTORE, A., SPECKMAN, P. & HOLMES, C. C. (2006). Spatially adaptive smoothing splines. Biometrika 93, 113-25.
    • (2006) Biometrika , vol.93 , pp. 113-125
    • Pintore, A.1    Speckman, P.2    Holmes, C.C.3
  • 19
    • 34250516079 scopus 로고
    • Smoothing by spline functions
    • REINSCH, C. H. (1967). Smoothing by spline functions. Numer. Math. 10, 177-83.
    • (1967) Numer. Math. , vol.10 , pp. 177-183
    • Reinsch, C.H.1
  • 22
    • 0000738873 scopus 로고
    • On the estimation of a probability density function by the maximum penalized likelihood method
    • SILVERMAN, B. W. (1982). On the estimation of a probability density function by the maximum penalized likelihood method. Ann. Statist. 10, 795-810.
    • (1982) Ann. Statist. , vol.10 , pp. 795-810
    • Silverman, B.W.1
  • 23
    • 0000439527 scopus 로고
    • Optimal global rates of convergence for nonparametric regression
    • STONE, C. J. (1982). Optimal global rates of convergence for nonparametric regression. Ann. Statist. 10, 1040-53.
    • (1982) Ann. Statist. , vol.10 , pp. 1040-1053
    • Stone, C.J.1
  • 24
    • 79953666263 scopus 로고    scopus 로고
    • Data analysis tools for uncertainty quantification of inverse problems
    • TENORIO, L., ANDERSSON, F., DE HOOP, M. & MA, P. (2011). Data analysis tools for uncertainty quantification of inverse problems. Inverse Problems 27, 045001.
    • (2011) Inverse Problems , vol.27 , pp. 045001
    • Tenorio, L.1    Andersson, F.2    De Hoop, M.3    Ma, P.4
  • 25
    • 0000927729 scopus 로고
    • Optimal smoothing of noisy data using spline functions
    • UTRERAS, F. (1981). Optimal smoothing of noisy data using spline functions. SIAM J. Sci. Statist. Comp. 2, 349-62.
    • (1981) SIAM J. Sci. Statist. Comp. , vol.2 , pp. 349-362
    • Utreras, F.1
  • 26
    • 34147209524 scopus 로고    scopus 로고
    • Seismo-stratigraphy and thermal structure of Earth's core-mantle boundary region
    • VAN DER HILST, R. D., DE HOOP, M. V., WANG, P., SHIM, S. H., MA, P. & TENORIO, L. (2007). Seismo-stratigraphy and thermal structure of Earth's core-mantle boundary region. Science 315, 1813-17.
    • (2007) Science , vol.315 , pp. 1813-1817
    • Van Der Hilst, R.D.1    De Hoop, M.V.2    Wang, P.3    Shim, S.H.4    Ma, P.5    Tenorio, L.6
  • 27
    • 0000939344 scopus 로고
    • Bayesian confidence intervals for the cross-validated smoothing spline
    • WAHBA, G. (1983). Bayesian 'confidence intervals' for the cross-validated smoothing spline. J. R. Statist. Soc. B 45, 133-50.
    • (1983) J. R. Statist. Soc. B , vol.45 , pp. 133-150
    • Wahba, G.1
  • 28
    • 0000608177 scopus 로고
    • A comparison of GCV and GML for choosing the smoothing parameter in the generalized spline smoothing problem
    • WAHBA, G. (1985). A comparison of GCV and GML for choosing the smoothing parameter in the generalized spline smoothing problem. Ann. Statist. 13, 1378-1402.
    • (1985) Ann. Statist. , vol.13 , pp. 1378-1402
    • Wahba, G.1
  • 30
    • 34547868550 scopus 로고    scopus 로고
    • On the asymptotics of penalized spline smoothing
    • WANG, P., DE HOOP, M. V., VAN DER HILST, R. D., MA, P. & TENORIO, L. (2006). Imaging of structure at and near the core mantle boundary using a generalized radon transform: 1. Construction of image gathers. J. Geophys. Res. 111, B12304.
    • (2006) J. Geophys. Res , vol.111 , pp. 1-17
    • Wang, P.1    De Hoop, M.V.2    Van Der Hilst, R.D.3    Ma, P.4    Tenorio, L.5
  • 31
    • 79961011040 scopus 로고    scopus 로고
    • Imaging of structure at and near the core mantle boundary using a generalized radon transform: 1. Construction of image gathers.
    • WANG, X., SHEN, J. & RUPPERT, D. (2011). On the asymptotics of penalized spline smoothing. Electron. J. Statist. 5, 1-17.
    • (2011) Electron. J. Statist. , pp. B12304
    • Wang, X.1    Shen, J.2    Ruppert, D.3
  • 32
    • 84890379704 scopus 로고    scopus 로고
    • Smoothing splines with varying smoothing parameter
    • WANG, X., DU, P. & SHEN, J. (2013). Smoothing splines with varying smoothing parameter. Biometrika 100, 955-70.
    • (2013) Biometrika , vol.100 , pp. 955-970
    • Wang, X.1    Shen, J.2
  • 35
    • 84878260587 scopus 로고    scopus 로고
    • Fast bivariate P-splines: The sandwich smoother
    • XIAO, L., LI, Y. & RUPPERT, D. (2013). Fast bivariate P-splines: The sandwich smoother. J. R. Statist. Soc. B 75, 577-99.
    • (2013) J. R. Statist. Soc. B , vol.75 , pp. 577-599
    • Xiao, L.1    Ruppert, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.