메뉴 건너뛰기




Volumn 20, Issue 6, 2015, Pages 621-635

Process for Assembly and Transformation into Saccharomyces cerevisiae of a Synthetic Yeast Artificial Chromosome Containing a Multigene Cassette to Express Enzymes That Enhance Xylose Utilization Designed for an Automated Platform

(17)  Hughes, Stephen R a   Cox, Elby J a,b   Bang, Sookie S c   Pinkelman, Rebecca J c   López Núñez, Juan Carlos d   Saha, Badal C a   Qureshi, Nasib a   Gibbons, William R e   Fry, Michelle R b   Moser, Bryan R a   Bischoff, Kenneth M a   Liu, Siqing a   Sterner, David E f   Butt, Tauseef R g   Riedmuller, Steven B h   Jones, Marjorie A i   Riaño Herrera, Néstor M d  


Author keywords

multigene expression cassette; stable cellulosic yeast; synthetic biology platform; synthetic yeast chromosome assembly; yeast artificial expression chromosome

Indexed keywords

AUTOMATION; CHROMOSOMES; ENZYMES; ETHANOL; GENE EXPRESSION; GLUCOSE; XYLOSE;

EID: 84948679632     PISSN: 22110682     EISSN: 22110690     Source Type: Journal    
DOI: 10.1177/2211068215573188     Document Type: Article
Times cited : (8)

References (42)
  • 1
    • 79551670374 scopus 로고    scopus 로고
    • Engineered Saccharomyces cerevisiae Capable of Simultaneous Cellobiose and Xylose Fermentation
    • S.-J.HaJ.M.GalazkaS.R.Kim. Engineered Saccharomyces cerevisiae Capable of Simultaneous Cellobiose and Xylose Fermentation. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 504–509.
    • (2011) Proc. Natl. Acad. Sci. U. S. A , vol.108 , pp. 504-509
    • Ha, S.-J.1    Galazka, J.M.2    Kim, S.R.3
  • 2
    • 85027958263 scopus 로고    scopus 로고
    • Conceptual Net Energy Output for Biofuel Production from Lignocellulosic Biomass through Biorefining
    • J.Y.ZhuX.S.ZhuangConceptual Net Energy Output for Biofuel Production from Lignocellulosic Biomass through Biorefining. Prog. Energ. Combust. 2012, 38, 583–598.
    • (2012) Prog. Energ. Combust , vol.38 , pp. 583-598
    • Zhu, J.Y.1    Zhuang, X.S.2
  • 3
    • 84874499132 scopus 로고    scopus 로고
    • Rational and Evolutionary Engineering Approaches Uncover a Small Set of Genetic Changes Efficient for Rapid Xylose Fermentation
    • in
    • S.R.KimJ.M.SkerkerW.Kang. Rational and Evolutionary Engineering Approaches Uncover a Small Set of Genetic Changes Efficient for Rapid Xylose Fermentation in Saccharomyces cerevisiae. PLoS One2013, 8, e57048.
    • (2013) Saccharomyces cerevisiae. PLoS One , vol.8 , pp. e57048
    • Kim, S.R.1    Skerker, J.M.2    Kang, W.3
  • 4
    • 77953211186 scopus 로고    scopus 로고
    • Bulk Segregant Analysis by High-Throughput Sequencing Reveals a Novel Xylose Utilization Gene from
    • J.W.WengerK.SchwartzG.SherlockBulk Segregant Analysis by High-Throughput Sequencing Reveals a Novel Xylose Utilization Gene fromSaccharomyces cerevisiae. PLoS Genet. 2010, 6, e1000942.
    • (2010) Saccharomyces cerevisiae. PLoS Genet , vol.6 , pp. e1000942
    • Wenger, J.W.1    Schwartz, K.2    Sherlock, G.3
  • 5
    • 0031832290 scopus 로고    scopus 로고
    • Genetically Engineered Saccharomyces Yeast Capable of Effective Cofermentation of Glucose and Xylose
    • N.W.Y.HoZ.ChenA.P.BrainardGenetically Engineered Saccharomyces Yeast Capable of Effective Cofermentation of Glucose and Xylose. Appl. Environ. Microbiol. 1998, 64, 1852–1859.
    • (1998) Appl. Environ. Microbiol , vol.64 , pp. 1852-1859
    • Ho, N.W.Y.1    Chen, Z.2    Brainard, A.P.3
  • 6
    • 1242264261 scopus 로고    scopus 로고
    • Metabolic Engineering for Improved Fermentation of Pentoses by Yeasts
    • T.W.JeffriesY.S.JinMetabolic Engineering for Improved Fermentation of Pentoses by Yeasts. Appl. Microbiol. Biotechnol. 2004, 63, 495–509.
    • (2004) Appl. Microbiol. Biotechnol , vol.63 , pp. 495-509
    • Jeffries, T.W.1    Jin, Y.S.2
  • 8
    • 34548728610 scopus 로고    scopus 로고
    • Development of Efficient Xylose Fermentation in Saccharomyces cerevisiae: Xylose Isomerase as a Key Component
    • A.J.A.Van MarisA.A.WinklerM.Kuyper. Development of Efficient Xylose Fermentation in Saccharomyces cerevisiae: Xylose Isomerase as a Key Component. Adv. Biochem. Eng. Biotechnol. 2007, 108, 179–204.
    • (2007) Adv. Biochem. Eng. Biotechnol , vol.108 , pp. 179-204
    • Van Maris, A.J.A.1    Winkler, A.A.2    Kuyper, M.3
  • 10
    • 67649470534 scopus 로고    scopus 로고
    • Automated Yeast Mating Protocol Using Open Reading Frames from Saccharomyces cerevisiae Genome to Improve Yeast Strains for Cellulosic Ethanol Production
    • S.R.HughesR.E.HectorJ.O.Rich. Automated Yeast Mating Protocol Using Open Reading Frames from Saccharomyces cerevisiae Genome to Improve Yeast Strains for Cellulosic Ethanol Production. J. Assoc. Lab. Autom. 2009, 14, 190–199.
    • (2009) J. Assoc. Lab. Autom , vol.14 , pp. 190-199
    • Hughes, S.R.1    Hector, R.E.2    Rich, J.O.3
  • 11
    • 56749160118 scopus 로고    scopus 로고
    • Three-Plasmid SUMO Yeast Vector System for Automated High-Level Functional Expression of Value-Added Co-Products in a Saccharomyces cerevisiae Strain Engineered for Xylose Utilization
    • S.R.HughesD.E.SternerK.M.Bischoff. Three-Plasmid SUMO Yeast Vector System for Automated High-Level Functional Expression of Value-Added Co-Products in a Saccharomyces cerevisiae Strain Engineered for Xylose Utilization. Plasmid2009, 61, 22–38.
    • (2009) Plasmid , vol.61 , pp. 22-38
    • Hughes, S.R.1    Sterner, D.E.2    Bischoff, K.M.3
  • 12
    • 59949093124 scopus 로고    scopus 로고
    • Novel Evolutionary Engineering Approach for Accelerated Utilization of Glucose, Xylose, and Arabinose Mixtures by Engineered Saccharomyces cerevisiae Strains
    • H.W.WisselinkM.J.ToirkensQ.Wu. Novel Evolutionary Engineering Approach for Accelerated Utilization of Glucose, Xylose, and Arabinose Mixtures by Engineered Saccharomyces cerevisiae Strains. Appl. Environ. Microbiol. 2009, 75, 907–914.
    • (2009) Appl. Environ. Microbiol , vol.75 , pp. 907-914
    • Wisselink, H.W.1    Toirkens, M.J.2    Wu, Q.3
  • 13
    • 77953368385 scopus 로고    scopus 로고
    • Improved Xylose and Arabinose Utilization by an Industrial Recombinant Saccharomyces cerevisiae Strain Using Evolutionary Engineering
    • R.Garcia SanchezK.KarhumaaC.Fonseca. Improved Xylose and Arabinose Utilization by an Industrial Recombinant Saccharomyces cerevisiae Strain Using Evolutionary Engineering. Biotechnol. Biofuels2010, 3, 13–19.
    • (2010) Biotechnol. Biofuels , vol.3 , pp. 13-19
    • Garcia Sanchez, R.1    Karhumaa, K.2    Fonseca, C.3
  • 14
    • 84867315946 scopus 로고    scopus 로고
    • Improvements in Ethanol Production from Xylose by Mating Recombinant Xylose-Fermenting Saccharomyces cerevisiae Strains
    • H.KatoH.SuyamaR.Yamada. Improvements in Ethanol Production from Xylose by Mating Recombinant Xylose-Fermenting Saccharomyces cerevisiae Strains. Appl. Microbiol. Biotechnol. 2012, 94, 1585–1592.
    • (2012) Appl. Microbiol. Biotechnol , vol.94 , pp. 1585-1592
    • Kato, H.1    Suyama, H.2    Yamada, R.3
  • 16
    • 84868565867 scopus 로고    scopus 로고
    • Novel Strategies to Improve Co-Fermentation of Pentoses with D-Glucose by Recombinant Yeast Strains in Lignocellulosic Hydrolysates
    • M.OrebH.DietzA.Farwick. Novel Strategies to Improve Co-Fermentation of Pentoses with D-Glucose by Recombinant Yeast Strains in Lignocellulosic Hydrolysates. Bioengineered2012, 3, 347–351.
    • (2012) Bioengineered , vol.3 , pp. 347-351
    • Oreb, M.1    Dietz, H.2    Farwick, A.3
  • 17
    • 84863618228 scopus 로고    scopus 로고
    • Evolutionary Engineering of Saccharomyces cerevisiae for Efficient Aerobic Xylose Consumption
    • G.ScalcinatiJ.M.OteroJ.R.Van-Vleet. Evolutionary Engineering of Saccharomyces cerevisiae for Efficient Aerobic Xylose Consumption. FEMS Yeast Res. 2012, 12, 582–597.
    • (2012) FEMS Yeast Res , vol.12 , pp. 582-597
    • Scalcinati, G.1    Otero, J.M.2    Van-Vleet, J.R.3
  • 18
    • 84878238023 scopus 로고    scopus 로고
    • Effect of Salts on the Co-Fermentation of Glucose and Xylose by a Genetically Engineered Strain of
    • E.CaseyN.F.MosierJ.Adamec. Effect of Salts on the Co-Fermentation of Glucose and Xylose by a Genetically Engineered Strain ofSaccharomyces cerevisiae. Biotechnol. Biofuels2013, 6, 83.
    • (2013) Saccharomyces cerevisiae. Biotechnol. Biofuels , vol.6 , pp. 83
    • Casey, E.1    Mosier, N.F.2    Adamec, J.3
  • 19
    • 84873843576 scopus 로고    scopus 로고
    • Combinatorial Design of a Highly Efficient Xylose-Utilizing Pathway in Saccharomyces cerevisiae for the Production of Cellulosic Biofuels
    • B.KimJ.DuD.T.Eriksen. Combinatorial Design of a Highly Efficient Xylose-Utilizing Pathway in Saccharomyces cerevisiae for the Production of Cellulosic Biofuels. Appl. Environ. Microbiol. 2013, 79, 931–941.
    • (2013) Appl. Environ. Microbiol , vol.79 , pp. 931-941
    • Kim, B.1    Du, J.2    Eriksen, D.T.3
  • 20
    • 84892934934 scopus 로고    scopus 로고
    • Transcription Analysis of Recombinant Industrial and Laboratory Saccharomyces cerevisiae Strains Reveals the Molecular Basis for Fermentation of Glucose and Xylose
    • A.MatsushikaT.GoshimaT.HoshinoTranscription Analysis of Recombinant Industrial and Laboratory Saccharomyces cerevisiae Strains Reveals the Molecular Basis for Fermentation of Glucose and Xylose. Microb. Cell Fact. 2014, 13, 16.
    • (2014) Microb. Cell Fact , vol.13 , pp. 16
    • Matsushika, A.1    Goshima, T.2    Hoshino, T.3
  • 21
    • 33847202270 scopus 로고    scopus 로고
    • Comparison of the Xylose Reductase-Xylitol Dehydrogenase and the Xylose Isomerase Pathways for Xylose Fermentation by Recombinant
    • K.KarhumaaR.Garcia SanchezB.Hahn-Hägerdal. Comparison of the Xylose Reductase-Xylitol Dehydrogenase and the Xylose Isomerase Pathways for Xylose Fermentation by RecombinantSaccharomyces cerevisiae. Microb. Cell Fact. 2007, 6, 5.
    • (2007) Saccharomyces cerevisiae. Microb. Cell Fact , vol.6 , pp. 5
    • Karhumaa, K.1    Garcia Sanchez, R.2    Hahn-Hägerdal, B.3
  • 22
    • 0037228901 scopus 로고    scopus 로고
    • Optimal Growth and Ethanol Production from Xylose by Recombinant Saccharomyces cerevisiae Require Moderate D-Xylulokinase Activity
    • Y.S.JinH.NiJ.M.Laplaza. Optimal Growth and Ethanol Production from Xylose by Recombinant Saccharomyces cerevisiae Require Moderate D-Xylulokinase Activity. Appl. Environ. Microbiol. 2003, 69, 495–503.
    • (2003) Appl. Environ. Microbiol , vol.69 , pp. 495-503
    • Jin, Y.S.1    Ni, H.2    Laplaza, J.M.3
  • 23
    • 3543073550 scopus 로고    scopus 로고
    • SUMO Fusions and SUMO-Specific Protease for Efficient Expression and Purification of Proteins
    • M.P.MalakhovM.R.MatternO.A.Malakhova. SUMO Fusions and SUMO-Specific Protease for Efficient Expression and Purification of Proteins. J. Struct. Func. Genomics2004, 5, 75–86.
    • (2004) J. Struct. Func. Genomics , vol.5 , pp. 75-86
    • Malakhov, M.P.1    Mattern, M.R.2    Malakhova, O.A.3
  • 24
    • 0037417333 scopus 로고    scopus 로고
    • The Ulp1 SUMO Isopeptidase: Distinct Domains Required for Viability, Nuclear Envelope Localization, and Substrate Specificity
    • S.-J.LiM.HochstrasserThe Ulp1 SUMO Isopeptidase: Distinct Domains Required for Viability, Nuclear Envelope Localization, and Substrate Specificity. J. Cell Biol. 2003, 160, 1069–1081.
    • (2003) J. Cell Biol , vol.160 , pp. 1069-1081
    • Li, S.-J.1    Hochstrasser, M.2
  • 25
    • 0023349389 scopus 로고
    • Cloning of Large Segments of Exogenous DNA into Yeast by Means of Artificial Chromosome Vectors
    • D.T.BurkeG.F.CarleM.V.OlsonCloning of Large Segments of Exogenous DNA into Yeast by Means of Artificial Chromosome Vectors. Science1987, 236, 806–812.
    • (1987) Science , vol.236 , pp. 806-812
    • Burke, D.T.1    Carle, G.F.2    Olson, M.V.3
  • 27
    • 0028288348 scopus 로고
    • Complete Sequence of the Yeast Artificial Chromosome Cloning Vector pYAC4
    • R.M.KuhnR.A.LudwigComplete Sequence of the Yeast Artificial Chromosome Cloning Vector pYAC4. Gene1994, 141, 125–127.
    • (1994) Gene , vol.141 , pp. 125-127
    • Kuhn, R.M.1    Ludwig, R.A.2
  • 30
    • 15244355319 scopus 로고    scopus 로고
    • A Mammalian Artificial Chromosome Engineering System (ACE System) Applicable to Biopharmaceutical Protein Production, Transgenesis and Gene-Based Cell Therapy
    • M.LindenbaumE.PerkinsE.Csonka. A Mammalian Artificial Chromosome Engineering System (ACE System) Applicable to Biopharmaceutical Protein Production, Transgenesis and Gene-Based Cell Therapy. Nucl. Acids Res. 2004, 32, e172.
    • (2004) Nucl. Acids Res , vol.32 , pp. e172
    • Lindenbaum, M.1    Perkins, E.2    Csonka, E.3
  • 31
    • 84946480596 scopus 로고    scopus 로고
    • Integrated Automation for Continuous High-Throughput Synthetic Chromosome Assembly and Transformation to Identify Improved Yeast Strains for Industrial Production of Biofuel and Bio-Based Chemicals
    • Van den Berg M.A., Maruthachalam K., (eds), New York: Springer,,. In,, Eds.;,, pp
    • S.R.HughesS.B.RiedmullerIntegrated Automation for Continuous High-Throughput Synthetic Chromosome Assembly and Transformation to Identify Improved Yeast Strains for Industrial Production of Biofuel and Bio-Based Chemicals. In Genetic Transformation Systems in Fungi; M.A.Van den BergK.Maruthachalam, Eds.; New York: Springer, 2014; Vol. 2, pp 183–200.
    • (2014) Genetic Transformation Systems in Fungi , vol.2 , pp. 183-200
    • Hughes, S.R.1    Riedmuller, S.B.2
  • 32
    • 26844444325 scopus 로고    scopus 로고
    • Dilute Acid Pretreatment, Enzymatic Saccharification and Fermentation of Wheat Straw to Ethanol
    • B.C.SahaL.B.ItenM.A.Cotta. Dilute Acid Pretreatment, Enzymatic Saccharification and Fermentation of Wheat Straw to Ethanol. Process Biochem. 2005, 40, 3693–3700.
    • (2005) Process Biochem , vol.40 , pp. 3693-3700
    • Saha, B.C.1    Iten, L.B.2    Cotta, M.A.3
  • 33
    • 84860520146 scopus 로고    scopus 로고
    • Biodiesel from Corn Distillers Dried Grains with Solubles: Preparation, Evaluation, and Properties
    • B.R.MoserS.F.VaughnBiodiesel from Corn Distillers Dried Grains with Solubles: Preparation, Evaluation, and Properties. Bioenerg. Res. 2012, 5, 439–449.
    • (2012) Bioenerg. Res , vol.5 , pp. 439-449
    • Moser, B.R.1    Vaughn, S.F.2
  • 34
    • 0032921776 scopus 로고    scopus 로고
    • Pretreatment and Enzymatic Saccharification of Corn Fiber
    • B.C.SahaR.J.BothastPretreatment and Enzymatic Saccharification of Corn Fiber. Appl Biochem Biotechnol. 1999, 76, 65–77.
    • (1999) Appl Biochem Biotechnol , vol.76 , pp. 65-77
    • Saha, B.C.1    Bothast, R.J.2
  • 35
    • 43049168575 scopus 로고    scopus 로고
    • Butanol Production by Clostridium beijerinckii: Part I. Use of Acid and Enzyme Hydrolyzed Corn Fiber
    • N.QureshiT.C.EzejiJ.Ebener. Butanol Production by Clostridium beijerinckii: Part I. Use of Acid and Enzyme Hydrolyzed Corn Fiber. Bioresour. Technol. 2008, 13, 5915–5922.
    • (2008) Bioresour. Technol , vol.13 , pp. 5915-5922
    • Qureshi, N.1    Ezeji, T.C.2    Ebener, J.3
  • 36
    • 84869020643 scopus 로고    scopus 로고
    • Biochemical Processing of Reed Canarygrass into Fuel Ethanol
    • B.S.DienM.D.CaslerR.E.Hector. Biochemical Processing of Reed Canarygrass into Fuel Ethanol. Int. J. Low Carbon Technol. 2012, 7, 338–347.
    • (2012) Int. J. Low Carbon Technol , vol.7 , pp. 338-347
    • Dien, B.S.1    Casler, M.D.2    Hector, R.E.3
  • 37
    • 53349128466 scopus 로고    scopus 로고
    • Lycotoxin-1 Insecticidal Peptide Optimized by Amino Acid Scanning Mutagenesis and Expressed as a Co-Product in an Ethanologenic Saccharomyces cerevisiae Strain
    • S.R.HughesP.F.DowdR.E.Hector. Lycotoxin-1 Insecticidal Peptide Optimized by Amino Acid Scanning Mutagenesis and Expressed as a Co-Product in an Ethanologenic Saccharomyces cerevisiae Strain. J. Pept. Sci. 2008, 14, 1039–1050.
    • (2008) J. Pept. Sci , vol.14 , pp. 1039-1050
    • Hughes, S.R.1    Dowd, P.F.2    Hector, R.E.3
  • 39
    • 13244262739 scopus 로고    scopus 로고
    • Metabolic Engineering of a Xylose-Isomerase-Expressing Saccharomyces cerevisiae Strain for Rapid Anaerobic Xylose Fermentation
    • M.KuyperM.M.HartogM.J.Toirkens. Metabolic Engineering of a Xylose-Isomerase-Expressing Saccharomyces cerevisiae Strain for Rapid Anaerobic Xylose Fermentation. FEMS Yeast Res. 2005, 5, 399–409.
    • (2005) FEMS Yeast Res , vol.5 , pp. 399-409
    • Kuyper, M.1    Hartog, M.M.2    Toirkens, M.J.3
  • 40
    • 84879993970 scopus 로고    scopus 로고
    • Fermentation of Xylose Causes Inefficient Metabolic State Due to Carbon/Energy Starvation and Reduced Glycolytic Flux in Recombinant Industrial
    • A.MatsushikaA.NagashimaT.Goshima. Fermentation of Xylose Causes Inefficient Metabolic State Due to Carbon/Energy Starvation and Reduced Glycolytic Flux in Recombinant IndustrialSaccharomyces cerevisiae. PLoS One2013, 8, e69005.
    • (2013) Saccharomyces cerevisiae. PLoS One , vol.8 , pp. e69005
    • Matsushika, A.1    Nagashima, A.2    Goshima, T.3
  • 41
    • 59649108349 scopus 로고    scopus 로고
    • DNA Assembler, an In Vivo Genetic Method for Rapid Construction of Biochemical Pathways
    • Z.ShaoH.ZhaoH.ZhaoDNA Assembler, an In Vivo Genetic Method for Rapid Construction of Biochemical Pathways. Nucleic Acids Res. 2009, 37, e16.
    • (2009) Nucleic Acids Res , vol.37 , pp. e16
    • Shao, Z.1    Zhao, H.2    Zhao, H.3
  • 42
    • 84892934934 scopus 로고    scopus 로고
    • Transcription Analysis of Recombinant Industrial and Laboratory Saccharomyces cerevisiae Strains Reveals the Molecular Basis for Fermentation of Glucose and Xylose
    • A.MatsushikaT.GoshimaT.HoshinoTranscription Analysis of Recombinant Industrial and Laboratory Saccharomyces cerevisiae Strains Reveals the Molecular Basis for Fermentation of Glucose and Xylose. Microb. Cell Fact. 2014, 13, 16.
    • (2014) Microb. Cell Fact , vol.13 , pp. 16
    • Matsushika, A.1    Goshima, T.2    Hoshino, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.