-
1
-
-
79551670374
-
Engineered Saccharomyces cerevisiae Capable of Simultaneous Cellobiose and Xylose Fermentation
-
S.-J.HaJ.M.GalazkaS.R.Kim. Engineered Saccharomyces cerevisiae Capable of Simultaneous Cellobiose and Xylose Fermentation. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 504–509.
-
(2011)
Proc. Natl. Acad. Sci. U. S. A
, vol.108
, pp. 504-509
-
-
Ha, S.-J.1
Galazka, J.M.2
Kim, S.R.3
-
2
-
-
85027958263
-
Conceptual Net Energy Output for Biofuel Production from Lignocellulosic Biomass through Biorefining
-
J.Y.ZhuX.S.ZhuangConceptual Net Energy Output for Biofuel Production from Lignocellulosic Biomass through Biorefining. Prog. Energ. Combust. 2012, 38, 583–598.
-
(2012)
Prog. Energ. Combust
, vol.38
, pp. 583-598
-
-
Zhu, J.Y.1
Zhuang, X.S.2
-
3
-
-
84874499132
-
Rational and Evolutionary Engineering Approaches Uncover a Small Set of Genetic Changes Efficient for Rapid Xylose Fermentation
-
in
-
S.R.KimJ.M.SkerkerW.Kang. Rational and Evolutionary Engineering Approaches Uncover a Small Set of Genetic Changes Efficient for Rapid Xylose Fermentation in Saccharomyces cerevisiae. PLoS One2013, 8, e57048.
-
(2013)
Saccharomyces cerevisiae. PLoS One
, vol.8
, pp. e57048
-
-
Kim, S.R.1
Skerker, J.M.2
Kang, W.3
-
4
-
-
77953211186
-
Bulk Segregant Analysis by High-Throughput Sequencing Reveals a Novel Xylose Utilization Gene from
-
J.W.WengerK.SchwartzG.SherlockBulk Segregant Analysis by High-Throughput Sequencing Reveals a Novel Xylose Utilization Gene fromSaccharomyces cerevisiae. PLoS Genet. 2010, 6, e1000942.
-
(2010)
Saccharomyces cerevisiae. PLoS Genet
, vol.6
, pp. e1000942
-
-
Wenger, J.W.1
Schwartz, K.2
Sherlock, G.3
-
5
-
-
0031832290
-
Genetically Engineered Saccharomyces Yeast Capable of Effective Cofermentation of Glucose and Xylose
-
N.W.Y.HoZ.ChenA.P.BrainardGenetically Engineered Saccharomyces Yeast Capable of Effective Cofermentation of Glucose and Xylose. Appl. Environ. Microbiol. 1998, 64, 1852–1859.
-
(1998)
Appl. Environ. Microbiol
, vol.64
, pp. 1852-1859
-
-
Ho, N.W.Y.1
Chen, Z.2
Brainard, A.P.3
-
6
-
-
1242264261
-
Metabolic Engineering for Improved Fermentation of Pentoses by Yeasts
-
T.W.JeffriesY.S.JinMetabolic Engineering for Improved Fermentation of Pentoses by Yeasts. Appl. Microbiol. Biotechnol. 2004, 63, 495–509.
-
(2004)
Appl. Microbiol. Biotechnol
, vol.63
, pp. 495-509
-
-
Jeffries, T.W.1
Jin, Y.S.2
-
8
-
-
34548728610
-
Development of Efficient Xylose Fermentation in Saccharomyces cerevisiae: Xylose Isomerase as a Key Component
-
A.J.A.Van MarisA.A.WinklerM.Kuyper. Development of Efficient Xylose Fermentation in Saccharomyces cerevisiae: Xylose Isomerase as a Key Component. Adv. Biochem. Eng. Biotechnol. 2007, 108, 179–204.
-
(2007)
Adv. Biochem. Eng. Biotechnol
, vol.108
, pp. 179-204
-
-
Van Maris, A.J.A.1
Winkler, A.A.2
Kuyper, M.3
-
10
-
-
67649470534
-
Automated Yeast Mating Protocol Using Open Reading Frames from Saccharomyces cerevisiae Genome to Improve Yeast Strains for Cellulosic Ethanol Production
-
S.R.HughesR.E.HectorJ.O.Rich. Automated Yeast Mating Protocol Using Open Reading Frames from Saccharomyces cerevisiae Genome to Improve Yeast Strains for Cellulosic Ethanol Production. J. Assoc. Lab. Autom. 2009, 14, 190–199.
-
(2009)
J. Assoc. Lab. Autom
, vol.14
, pp. 190-199
-
-
Hughes, S.R.1
Hector, R.E.2
Rich, J.O.3
-
11
-
-
56749160118
-
Three-Plasmid SUMO Yeast Vector System for Automated High-Level Functional Expression of Value-Added Co-Products in a Saccharomyces cerevisiae Strain Engineered for Xylose Utilization
-
S.R.HughesD.E.SternerK.M.Bischoff. Three-Plasmid SUMO Yeast Vector System for Automated High-Level Functional Expression of Value-Added Co-Products in a Saccharomyces cerevisiae Strain Engineered for Xylose Utilization. Plasmid2009, 61, 22–38.
-
(2009)
Plasmid
, vol.61
, pp. 22-38
-
-
Hughes, S.R.1
Sterner, D.E.2
Bischoff, K.M.3
-
12
-
-
59949093124
-
Novel Evolutionary Engineering Approach for Accelerated Utilization of Glucose, Xylose, and Arabinose Mixtures by Engineered Saccharomyces cerevisiae Strains
-
H.W.WisselinkM.J.ToirkensQ.Wu. Novel Evolutionary Engineering Approach for Accelerated Utilization of Glucose, Xylose, and Arabinose Mixtures by Engineered Saccharomyces cerevisiae Strains. Appl. Environ. Microbiol. 2009, 75, 907–914.
-
(2009)
Appl. Environ. Microbiol
, vol.75
, pp. 907-914
-
-
Wisselink, H.W.1
Toirkens, M.J.2
Wu, Q.3
-
13
-
-
77953368385
-
Improved Xylose and Arabinose Utilization by an Industrial Recombinant Saccharomyces cerevisiae Strain Using Evolutionary Engineering
-
R.Garcia SanchezK.KarhumaaC.Fonseca. Improved Xylose and Arabinose Utilization by an Industrial Recombinant Saccharomyces cerevisiae Strain Using Evolutionary Engineering. Biotechnol. Biofuels2010, 3, 13–19.
-
(2010)
Biotechnol. Biofuels
, vol.3
, pp. 13-19
-
-
Garcia Sanchez, R.1
Karhumaa, K.2
Fonseca, C.3
-
14
-
-
84867315946
-
Improvements in Ethanol Production from Xylose by Mating Recombinant Xylose-Fermenting Saccharomyces cerevisiae Strains
-
H.KatoH.SuyamaR.Yamada. Improvements in Ethanol Production from Xylose by Mating Recombinant Xylose-Fermenting Saccharomyces cerevisiae Strains. Appl. Microbiol. Biotechnol. 2012, 94, 1585–1592.
-
(2012)
Appl. Microbiol. Biotechnol
, vol.94
, pp. 1585-1592
-
-
Kato, H.1
Suyama, H.2
Yamada, R.3
-
15
-
-
84948703930
-
-
Paper presented at Advanced Biofuels in a Biorefinery Approach, Biorefinery Conference, Copenhagen, Denmark:
-
K.OlofssonO.SibbesenT.H.Andersen. Rapid Xylose and Glucose Fermentation by Engineered S. cerevisiae for Commercial Production of Cellulosic Ethanol. Paper presented at Advanced Biofuels in a Biorefinery Approach, Biorefinery Conference, February 28 to March 1, 2012, Copenhagen, Denmark.
-
Rapid Xylose and Glucose Fermentation by Engineered S. cerevisiae for Commercial Production of Cellulosic Ethanol
-
-
Olofsson, K.1
Sibbesen, O.2
Andersen, T.H.3
-
16
-
-
84868565867
-
Novel Strategies to Improve Co-Fermentation of Pentoses with D-Glucose by Recombinant Yeast Strains in Lignocellulosic Hydrolysates
-
M.OrebH.DietzA.Farwick. Novel Strategies to Improve Co-Fermentation of Pentoses with D-Glucose by Recombinant Yeast Strains in Lignocellulosic Hydrolysates. Bioengineered2012, 3, 347–351.
-
(2012)
Bioengineered
, vol.3
, pp. 347-351
-
-
Oreb, M.1
Dietz, H.2
Farwick, A.3
-
17
-
-
84863618228
-
Evolutionary Engineering of Saccharomyces cerevisiae for Efficient Aerobic Xylose Consumption
-
G.ScalcinatiJ.M.OteroJ.R.Van-Vleet. Evolutionary Engineering of Saccharomyces cerevisiae for Efficient Aerobic Xylose Consumption. FEMS Yeast Res. 2012, 12, 582–597.
-
(2012)
FEMS Yeast Res
, vol.12
, pp. 582-597
-
-
Scalcinati, G.1
Otero, J.M.2
Van-Vleet, J.R.3
-
18
-
-
84878238023
-
Effect of Salts on the Co-Fermentation of Glucose and Xylose by a Genetically Engineered Strain of
-
E.CaseyN.F.MosierJ.Adamec. Effect of Salts on the Co-Fermentation of Glucose and Xylose by a Genetically Engineered Strain ofSaccharomyces cerevisiae. Biotechnol. Biofuels2013, 6, 83.
-
(2013)
Saccharomyces cerevisiae. Biotechnol. Biofuels
, vol.6
, pp. 83
-
-
Casey, E.1
Mosier, N.F.2
Adamec, J.3
-
19
-
-
84873843576
-
Combinatorial Design of a Highly Efficient Xylose-Utilizing Pathway in Saccharomyces cerevisiae for the Production of Cellulosic Biofuels
-
B.KimJ.DuD.T.Eriksen. Combinatorial Design of a Highly Efficient Xylose-Utilizing Pathway in Saccharomyces cerevisiae for the Production of Cellulosic Biofuels. Appl. Environ. Microbiol. 2013, 79, 931–941.
-
(2013)
Appl. Environ. Microbiol
, vol.79
, pp. 931-941
-
-
Kim, B.1
Du, J.2
Eriksen, D.T.3
-
20
-
-
84892934934
-
Transcription Analysis of Recombinant Industrial and Laboratory Saccharomyces cerevisiae Strains Reveals the Molecular Basis for Fermentation of Glucose and Xylose
-
A.MatsushikaT.GoshimaT.HoshinoTranscription Analysis of Recombinant Industrial and Laboratory Saccharomyces cerevisiae Strains Reveals the Molecular Basis for Fermentation of Glucose and Xylose. Microb. Cell Fact. 2014, 13, 16.
-
(2014)
Microb. Cell Fact
, vol.13
, pp. 16
-
-
Matsushika, A.1
Goshima, T.2
Hoshino, T.3
-
21
-
-
33847202270
-
Comparison of the Xylose Reductase-Xylitol Dehydrogenase and the Xylose Isomerase Pathways for Xylose Fermentation by Recombinant
-
K.KarhumaaR.Garcia SanchezB.Hahn-Hägerdal. Comparison of the Xylose Reductase-Xylitol Dehydrogenase and the Xylose Isomerase Pathways for Xylose Fermentation by RecombinantSaccharomyces cerevisiae. Microb. Cell Fact. 2007, 6, 5.
-
(2007)
Saccharomyces cerevisiae. Microb. Cell Fact
, vol.6
, pp. 5
-
-
Karhumaa, K.1
Garcia Sanchez, R.2
Hahn-Hägerdal, B.3
-
22
-
-
0037228901
-
Optimal Growth and Ethanol Production from Xylose by Recombinant Saccharomyces cerevisiae Require Moderate D-Xylulokinase Activity
-
Y.S.JinH.NiJ.M.Laplaza. Optimal Growth and Ethanol Production from Xylose by Recombinant Saccharomyces cerevisiae Require Moderate D-Xylulokinase Activity. Appl. Environ. Microbiol. 2003, 69, 495–503.
-
(2003)
Appl. Environ. Microbiol
, vol.69
, pp. 495-503
-
-
Jin, Y.S.1
Ni, H.2
Laplaza, J.M.3
-
23
-
-
3543073550
-
SUMO Fusions and SUMO-Specific Protease for Efficient Expression and Purification of Proteins
-
M.P.MalakhovM.R.MatternO.A.Malakhova. SUMO Fusions and SUMO-Specific Protease for Efficient Expression and Purification of Proteins. J. Struct. Func. Genomics2004, 5, 75–86.
-
(2004)
J. Struct. Func. Genomics
, vol.5
, pp. 75-86
-
-
Malakhov, M.P.1
Mattern, M.R.2
Malakhova, O.A.3
-
24
-
-
0037417333
-
The Ulp1 SUMO Isopeptidase: Distinct Domains Required for Viability, Nuclear Envelope Localization, and Substrate Specificity
-
S.-J.LiM.HochstrasserThe Ulp1 SUMO Isopeptidase: Distinct Domains Required for Viability, Nuclear Envelope Localization, and Substrate Specificity. J. Cell Biol. 2003, 160, 1069–1081.
-
(2003)
J. Cell Biol
, vol.160
, pp. 1069-1081
-
-
Li, S.-J.1
Hochstrasser, M.2
-
25
-
-
0023349389
-
Cloning of Large Segments of Exogenous DNA into Yeast by Means of Artificial Chromosome Vectors
-
D.T.BurkeG.F.CarleM.V.OlsonCloning of Large Segments of Exogenous DNA into Yeast by Means of Artificial Chromosome Vectors. Science1987, 236, 806–812.
-
(1987)
Science
, vol.236
, pp. 806-812
-
-
Burke, D.T.1
Carle, G.F.2
Olson, M.V.3
-
27
-
-
0028288348
-
Complete Sequence of the Yeast Artificial Chromosome Cloning Vector pYAC4
-
R.M.KuhnR.A.LudwigComplete Sequence of the Yeast Artificial Chromosome Cloning Vector pYAC4. Gene1994, 141, 125–127.
-
(1994)
Gene
, vol.141
, pp. 125-127
-
-
Kuhn, R.M.1
Ludwig, R.A.2
-
30
-
-
15244355319
-
A Mammalian Artificial Chromosome Engineering System (ACE System) Applicable to Biopharmaceutical Protein Production, Transgenesis and Gene-Based Cell Therapy
-
M.LindenbaumE.PerkinsE.Csonka. A Mammalian Artificial Chromosome Engineering System (ACE System) Applicable to Biopharmaceutical Protein Production, Transgenesis and Gene-Based Cell Therapy. Nucl. Acids Res. 2004, 32, e172.
-
(2004)
Nucl. Acids Res
, vol.32
, pp. e172
-
-
Lindenbaum, M.1
Perkins, E.2
Csonka, E.3
-
31
-
-
84946480596
-
Integrated Automation for Continuous High-Throughput Synthetic Chromosome Assembly and Transformation to Identify Improved Yeast Strains for Industrial Production of Biofuel and Bio-Based Chemicals
-
Van den Berg M.A., Maruthachalam K., (eds), New York: Springer,,. In,, Eds.;,, pp
-
S.R.HughesS.B.RiedmullerIntegrated Automation for Continuous High-Throughput Synthetic Chromosome Assembly and Transformation to Identify Improved Yeast Strains for Industrial Production of Biofuel and Bio-Based Chemicals. In Genetic Transformation Systems in Fungi; M.A.Van den BergK.Maruthachalam, Eds.; New York: Springer, 2014; Vol. 2, pp 183–200.
-
(2014)
Genetic Transformation Systems in Fungi
, vol.2
, pp. 183-200
-
-
Hughes, S.R.1
Riedmuller, S.B.2
-
32
-
-
26844444325
-
Dilute Acid Pretreatment, Enzymatic Saccharification and Fermentation of Wheat Straw to Ethanol
-
B.C.SahaL.B.ItenM.A.Cotta. Dilute Acid Pretreatment, Enzymatic Saccharification and Fermentation of Wheat Straw to Ethanol. Process Biochem. 2005, 40, 3693–3700.
-
(2005)
Process Biochem
, vol.40
, pp. 3693-3700
-
-
Saha, B.C.1
Iten, L.B.2
Cotta, M.A.3
-
33
-
-
84860520146
-
Biodiesel from Corn Distillers Dried Grains with Solubles: Preparation, Evaluation, and Properties
-
B.R.MoserS.F.VaughnBiodiesel from Corn Distillers Dried Grains with Solubles: Preparation, Evaluation, and Properties. Bioenerg. Res. 2012, 5, 439–449.
-
(2012)
Bioenerg. Res
, vol.5
, pp. 439-449
-
-
Moser, B.R.1
Vaughn, S.F.2
-
34
-
-
0032921776
-
Pretreatment and Enzymatic Saccharification of Corn Fiber
-
B.C.SahaR.J.BothastPretreatment and Enzymatic Saccharification of Corn Fiber. Appl Biochem Biotechnol. 1999, 76, 65–77.
-
(1999)
Appl Biochem Biotechnol
, vol.76
, pp. 65-77
-
-
Saha, B.C.1
Bothast, R.J.2
-
35
-
-
43049168575
-
Butanol Production by Clostridium beijerinckii: Part I. Use of Acid and Enzyme Hydrolyzed Corn Fiber
-
N.QureshiT.C.EzejiJ.Ebener. Butanol Production by Clostridium beijerinckii: Part I. Use of Acid and Enzyme Hydrolyzed Corn Fiber. Bioresour. Technol. 2008, 13, 5915–5922.
-
(2008)
Bioresour. Technol
, vol.13
, pp. 5915-5922
-
-
Qureshi, N.1
Ezeji, T.C.2
Ebener, J.3
-
37
-
-
53349128466
-
Lycotoxin-1 Insecticidal Peptide Optimized by Amino Acid Scanning Mutagenesis and Expressed as a Co-Product in an Ethanologenic Saccharomyces cerevisiae Strain
-
S.R.HughesP.F.DowdR.E.Hector. Lycotoxin-1 Insecticidal Peptide Optimized by Amino Acid Scanning Mutagenesis and Expressed as a Co-Product in an Ethanologenic Saccharomyces cerevisiae Strain. J. Pept. Sci. 2008, 14, 1039–1050.
-
(2008)
J. Pept. Sci
, vol.14
, pp. 1039-1050
-
-
Hughes, S.R.1
Dowd, P.F.2
Hector, R.E.3
-
39
-
-
13244262739
-
Metabolic Engineering of a Xylose-Isomerase-Expressing Saccharomyces cerevisiae Strain for Rapid Anaerobic Xylose Fermentation
-
M.KuyperM.M.HartogM.J.Toirkens. Metabolic Engineering of a Xylose-Isomerase-Expressing Saccharomyces cerevisiae Strain for Rapid Anaerobic Xylose Fermentation. FEMS Yeast Res. 2005, 5, 399–409.
-
(2005)
FEMS Yeast Res
, vol.5
, pp. 399-409
-
-
Kuyper, M.1
Hartog, M.M.2
Toirkens, M.J.3
-
40
-
-
84879993970
-
Fermentation of Xylose Causes Inefficient Metabolic State Due to Carbon/Energy Starvation and Reduced Glycolytic Flux in Recombinant Industrial
-
A.MatsushikaA.NagashimaT.Goshima. Fermentation of Xylose Causes Inefficient Metabolic State Due to Carbon/Energy Starvation and Reduced Glycolytic Flux in Recombinant IndustrialSaccharomyces cerevisiae. PLoS One2013, 8, e69005.
-
(2013)
Saccharomyces cerevisiae. PLoS One
, vol.8
, pp. e69005
-
-
Matsushika, A.1
Nagashima, A.2
Goshima, T.3
-
41
-
-
59649108349
-
DNA Assembler, an In Vivo Genetic Method for Rapid Construction of Biochemical Pathways
-
Z.ShaoH.ZhaoH.ZhaoDNA Assembler, an In Vivo Genetic Method for Rapid Construction of Biochemical Pathways. Nucleic Acids Res. 2009, 37, e16.
-
(2009)
Nucleic Acids Res
, vol.37
, pp. e16
-
-
Shao, Z.1
Zhao, H.2
Zhao, H.3
-
42
-
-
84892934934
-
Transcription Analysis of Recombinant Industrial and Laboratory Saccharomyces cerevisiae Strains Reveals the Molecular Basis for Fermentation of Glucose and Xylose
-
A.MatsushikaT.GoshimaT.HoshinoTranscription Analysis of Recombinant Industrial and Laboratory Saccharomyces cerevisiae Strains Reveals the Molecular Basis for Fermentation of Glucose and Xylose. Microb. Cell Fact. 2014, 13, 16.
-
(2014)
Microb. Cell Fact
, vol.13
, pp. 16
-
-
Matsushika, A.1
Goshima, T.2
Hoshino, T.3
|