메뉴 건너뛰기




Volumn 32, Issue 12, 2015, Pages 1016-1026

Selecting Parameter-Optimized Surrogate Models in DNAPL-Contaminated Aquifer Remediation Strategies

Author keywords

DNAPLs; parameter optimization; simulation optimization; surrogate model

Indexed keywords

ALGORITHMS; AQUIFERS; FUEL ADDITIVES; GENETIC ALGORITHMS; GROUNDWATER POLLUTION; HEALTH RISKS; IMPURITIES; INTERPOLATION; NEURAL NETWORKS; OPTIMIZATION; PARAMETER ESTIMATION; POLLUTION; RADIAL BASIS FUNCTION NETWORKS; SIMULATED ANNEALING;

EID: 84947909371     PISSN: 10928758     EISSN: 15579018     Source Type: Journal    
DOI: 10.1089/ees.2015.0055     Document Type: Article
Times cited : (43)

References (30)
  • 1
    • 0037010741 scopus 로고    scopus 로고
    • Factors affecting air sparging remediation systems using field data and numerical simulations
    • Benner, M.L., Mohtar, R.H., and Lee, L.S. (2002). Factors affecting air sparging remediation systems using field data and numerical simulations. J. Hazard.Mater. 95, 305.
    • (2002) J. Hazard.Mater. , vol.95 , pp. 305
    • Benner, M.L.1    Mohtar, R.H.2    Lee, L.S.3
  • 2
    • 78651338397 scopus 로고    scopus 로고
    • Six strategies for defeating the Runge Phenomenon in Gaussian radial basis functions on a finite interval
    • [J]
    • Boyd, J.P. (2010). Six strategies for defeating the Runge Phenomenon in Gaussian radial basis functions on a finite interval [J]. Comput. Math. Appl. 60, 3108.
    • (2010) Comput. Math. Appl. , vol.60 , pp. 3108
    • Boyd, J.P.1
  • 4
    • 84887662729 scopus 로고    scopus 로고
    • Parameter optimization for microlens arrays fabrication using genetic algorithms
    • Chiu, C.Y., Lin, Y., et al. (2012). Parameter optimization for microlens arrays fabrication using genetic algorithms. J. Chin. Soc. Mech. Eng. 33, 525.
    • (2012) J. Chin. Soc. Mech. Eng. , vol.33 , pp. 525
    • Chiu, C.Y.1    Lin, Y.2
  • 5
    • 0030201402 scopus 로고    scopus 로고
    • A compositional simulator for modeling surfactant enhanced aquifer remediation, 1. Formulation
    • Delshad, M., Pope, G.A., and Sepehrnoori, K. (1996). A compositional simulator for modeling surfactant enhanced aquifer remediation, 1. Formulation. J. Contam. Hydrol. 23, 303.
    • (1996) J. Contam. Hydrol. , vol.23 , pp. 303
    • Delshad, M.1    Pope, G.A.2    Sepehrnoori, K.3
  • 6
    • 84855241610 scopus 로고    scopus 로고
    • A Bayesian approach to integrate temporal data into probabilistic risk analysis of monitored NAPL remediation
    • Fernandez-Garcia, D., Bolster, D., Sanchez-Vila, X., et al. (2012). A Bayesian approach to integrate temporal data into probabilistic risk analysis of monitored NAPL remediation. Adv. Water Resour. 36, 108.
    • (2012) Adv. Water Resour. , vol.36 , pp. 108
    • Fernandez-Garcia, D.1    Bolster, D.2    Sanchez-Vila, X.3
  • 7
    • 43049151401 scopus 로고    scopus 로고
    • An integrated simulation, inference, and optimization method for identifying groundwater remediation strategies at petroleum-contaminated aquifers in western Canada
    • He, L., Huang, G.H., Zeng, G.M., et al. (2008). An integrated simulation, inference, and optimization method for identifying groundwater remediation strategies at petroleum-contaminated aquifers in western Canada. Water Res. 42, 2629.
    • (2008) Water Res. , vol.42 , pp. 2629
    • He, L.1    Huang, G.H.2    Zeng, G.M.3
  • 8
    • 84905046917 scopus 로고    scopus 로고
    • State-of-charge estimation for battery management system using optimized support vector machine for regression
    • [J]
    • Hu, J.N., Hu, J.J., Lin, H.B., et al. (2014). State-of-charge estimation for battery management system using optimized support vector machine for regression [J]. J. Power Sources 269, 682.
    • (2014) J. Power Sources , vol.269 , pp. 682
    • Hu, J.N.1    Hu, J.J.2    Lin, H.B.3
  • 9
    • 84947931095 scopus 로고    scopus 로고
    • Radial basis function networks and complexity regularization in function learning and classification
    • A. Sanfeliu and J.J. Villanueva, Eds., Barcelona, Spain: Los Alamitos: IEEE Computer Society
    • Kegl, B., Krzyak, A., and Niemann, H. (2000). Radial basis function networks and complexity regularization in function learning and classification. In: A. Sanfeliu and J.J. Villanueva, Eds., Proceedings of the 15th International Conference on Pattern Recognition, Barcelona, Spain: Vol. 2. Los Alamitos: IEEE Computer Society, p. 2081.
    • (2000) Proceedings of the 15th International Conference on Pattern Recognition , vol.2 , pp. 2081
    • Kegl, B.1    Krzyak, A.2    Niemann, H.3
  • 10
    • 84884166181 scopus 로고    scopus 로고
    • Prediction of gas solubility in polymers by back propagation artificial neural network based on self-adaptive particle swarm optimization algorithm and chaos theory
    • [J]
    • Li, M.S., Huang, X.Y., Liu, H.S., et al. (2013). Prediction of gas solubility in polymers by back propagation artificial neural network based on self-adaptive particle swarm optimization algorithm and chaos theory [J]. Fluid Phase Equilibr. 356, 11.
    • (2013) Fluid Phase Equilibr. , vol.356 , pp. 11
    • Li, M.S.1    Huang, X.Y.2    Liu, H.S.3
  • 11
    • 84894183544 scopus 로고    scopus 로고
    • Parameters optimization for machining optical parts of difficult-to-cut materials by genetic algorithm
    • Li, Y.C., Zhou, X.Q., Lu, M.M., et al. (2014). Parameters optimization for machining optical parts of difficult-to-cut materials by genetic algorithm. Mater. Manuf.Process. 29, 9.
    • (2014) Mater. Manuf.Process. , vol.29 , pp. 9
    • Li, Y.C.1    Zhou, X.Q.2    Lu, M.M.3
  • 12
    • 33745706541 scopus 로고    scopus 로고
    • Modeling for surfactant-enhanced groundwater remediation processes at DNAPLs-contaminated sites
    • Liu, L. (2005). Modeling for surfactant-enhanced groundwater remediation processes at DNAPLs-contaminated sites. J. Environ. Inform. 5, 42.
    • (2005) J. Environ. Inform. , vol.5 , pp. 42
    • Liu, L.1
  • 13
    • 0034494814 scopus 로고    scopus 로고
    • Optimization of intermittent pumping schedules for aquifer remediation using a genetic algorithm
    • Liu, W.H., Medina, M.A., Jr., Thomann, W., et al. (2000). Optimization of intermittent pumping schedules for aquifer remediation using a genetic algorithm. J. Am.Leather Chem. Assoc. 36, 1335.
    • (2000) J. Am.Leather Chem. Assoc. , vol.36 , pp. 1335
    • Liu, W.H.1    Medina, M.A.2    Thomann, W.3
  • 14
    • 84884231993 scopus 로고    scopus 로고
    • Optimization of denser nonaqueous phase liquids-contaminated groundwater remediation based on Kriging surrogate model
    • Lu, W.X., Chu, H.B., et al. (2013). Optimization of denser nonaqueous phase liquids-contaminated groundwater remediation based on Kriging surrogate model. Water Pract. Technol. 8, 304.
    • (2013) Water Pract. Technol. , vol.8 , pp. 304
    • Lu, W.X.1    Chu, H.B.2
  • 15
    • 76849109479 scopus 로고    scopus 로고
    • A study on the use of imputation methods for experimentation with Radial Basis Function Network classifiers handling missing attribute values: The good synergy between RBFNs and EventCovering method
    • [J]
    • Luengo, J., García, S., and Herrera, F. (2010). A study on the use of imputation methods for experimentation with Radial Basis Function Network classifiers handling missing attribute values: The good synergy between RBFNs and EventCovering method [J]. Neural Netw. 23, 406.
    • (2010) Neural Netw. , vol.23 , pp. 406
    • Luengo, J.1    García, S.2    Herrera, F.3
  • 16
    • 84897935264 scopus 로고    scopus 로고
    • Sobol' sensitivity analysis of NAPL-contaminated aquifer remediation process based on multiple surrogates
    • [J]
    • Luo, J.N., and Lu, W.X. (2014). Sobol' sensitivity analysis of NAPL-contaminated aquifer remediation process based on multiple surrogates [J]. Comput. Geosci. 67, 110.
    • (2014) Comput. Geosci. , vol.67 , pp. 110
    • Luo, J.N.1    Lu, W.X.2
  • 17
    • 84890378844 scopus 로고    scopus 로고
    • Surrogate model application to the identification of an optimal surfactant-enhanced aquifer remediation strategy for DNAPL-contaminated sites
    • [J]
    • Luo, J.N., Lu, W.X., Xin, X., et al. (2013). Surrogate model application to the identification of an optimal surfactant-enhanced aquifer remediation strategy for DNAPL-contaminated sites [J]. J. Earth Sci. 24, 1023.
    • (2013) J. Earth Sci. , vol.24 , pp. 1023
    • Luo, J.N.1    Lu, W.X.2    Xin, X.3
  • 18
    • 84903280064 scopus 로고    scopus 로고
    • Integration of artificial neural network and simulated annealing algorithm to optimize deep drawing process
    • [J]
    • Manoochehri, M., and Kolahan, F. (2014). Integration of artificial neural network and simulated annealing algorithm to optimize deep drawing process [J]. Int. J. Adv. Manufact. Technol. 73, 241.
    • (2014) Int. J. Adv. Manufact. Technol. , vol.73 , pp. 241
    • Manoochehri, M.1    Kolahan, F.2
  • 19
    • 3142538909 scopus 로고    scopus 로고
    • Improved streamflow forecasting using self-organizing radial basis function artificial neural networks
    • Moradkhani, H., Hsu, K., Gupta, H.V., et al. (2004). Improved streamflow forecasting using self-organizing radial basis function artificial neural networks. J. Hydrol. 295, 246.
    • (2004) J. Hydrol. , vol.295 , pp. 246
    • Moradkhani, H.1    Hsu, K.2    Gupta, H.V.3
  • 20
    • 79951853422 scopus 로고    scopus 로고
    • Evolutionary q-Gaussian radial basis function neural network to determine the microbial growth/no growth interface of Staphylococcus aureus
    • [J]
    • Navarro, F.F., Martínez, C.H., Ramírez, M.C., et al. (2011). Evolutionary q-Gaussian radial basis function neural network to determine the microbial growth/no growth interface of Staphylococcus aureus [J]. Appl. Soft Comput. 11, 3012.
    • (2011) Appl. Soft Comput. , vol.11 , pp. 3012
    • Navarro, F.F.1    Martínez, C.H.2    Ramírez, M.C.3
  • 21
    • 34249821064 scopus 로고    scopus 로고
    • Simulation-based process optimization for surfactant-enhanced aquifer remediation at heterogeneous DNAPL-contaminated sites
    • Qin, X.S., Huang, G.H., Chakma, A., et al. (2007). Simulation-based process optimization for surfactant-enhanced aquifer remediation at heterogeneous DNAPL-contaminated sites. Sci. Total Environ. 381, 17.
    • (2007) Sci. Total Environ. , vol.381 , pp. 17
    • Qin, X.S.1    Huang, G.H.2    Chakma, A.3
  • 22
    • 34147115207 scopus 로고    scopus 로고
    • Application of multiphase transport models to field remediation by air sparging and soil vapor extraction
    • Rahbeh, M.E., and Mohtar, R.H. (2006). Application of multiphase transport models to field remediation by air sparging and soil vapor extraction. J. Hazard. Mater. 143, 156.
    • (2006) J. Hazard. Mater , vol.143 , pp. 156
    • Rahbeh, M.E.1    Mohtar, R.H.2
  • 23
    • 78149285658 scopus 로고    scopus 로고
    • Stochastic radial basis function algorithms for large-scale optimization involving expensive black-box objective and constraint functions
    • [J]
    • Regis, R.G. (2011). Stochastic radial basis function algorithms for large-scale optimization involving expensive black-box objective and constraint functions [J]. Comput. Oper. Res. 38, 837.
    • (2011) Comput. Oper. Res. , vol.38 , pp. 837
    • Regis, R.G.1
  • 24
    • 84972517827 scopus 로고
    • Design and analysis of computer experiments
    • [J]
    • Sacks, J., Welch, W.J., Mitchell, T.J., et al. (1989). Design and analysis of computer experiments [J]. Stat. Sci. 4, 409.
    • (1989) Stat. Sci. , vol.4 , pp. 409
    • Sacks, J.1    Welch, W.J.2    Mitchell, T.J.3
  • 25
    • 79551685695 scopus 로고    scopus 로고
    • Forecasting stock indices using radial basis function neural networks optimized by artificial fish swarm algorithm
    • Shen, W., Guo, X., Wu, C., et al. (2010). Forecasting stock indices using radial basis function neural networks optimized by artificial fish swarm algorithm. Knowl. Based Syst. 3, 378.
    • (2010) Knowl. Based Syst. , vol.3 , pp. 378
    • Shen, W.1    Guo, X.2    Wu, C.3
  • 26
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • [J]
    • Smola, A.J., and Scholkopf, B. (2004). A tutorial on support vector regression [J]. Stat. Comput. 14, 199.
    • (2004) Stat. Comput. , vol.14 , pp. 199
    • Smola, A.J.1    Scholkopf, B.2
  • 27
    • 77957874307 scopus 로고    scopus 로고
    • Multi-objective management of saltwater intrusion in coastal aquifers using genetic programming and modular neural network based surrogate models
    • Sreekanth, J., and Datta, B. (2010). Multi-objective management of saltwater intrusion in coastal aquifers using genetic programming and modular neural network based surrogate models. J. Hydrol. 393, 245.
    • (2010) J. Hydrol. , vol.393 , pp. 245
    • Sreekanth, J.1    Datta, B.2
  • 28
    • 77649309861 scopus 로고    scopus 로고
    • An improved self-adaptive particle swarm optimization algorithm with simulated annealing
    • Q. Luo and M. Zhu, Eds., Nanchang, China: Los Alamitos: IEEE Computer Society
    • Sun, J., and Li, J. (2009). An improved self-adaptive particle swarm optimization algorithm with simulated annealing. In: Q. Luo and M. Zhu, Eds., Third International Symposium on Intelligent Information Technology Application, Nanchang, China: Vol. 3. Los Alamitos: IEEE Computer Society, p. 396.
    • (2009) Third International Symposium on Intelligent Information Technology Application , vol.3 , pp. 396
    • Sun, J.1    Li, J.2
  • 29
    • 84900534639 scopus 로고    scopus 로고
    • Implementing particle swarm optimization algorithm to estimate the mixture of two Weibull parameters with censored data
    • Wang, F.K., and Huang, P.R. (2014). Implementing particle swarm optimization algorithm to estimate the mixture of two Weibull parameters with censored data. J. Stat. Comput. Simulat. 84, 1975.
    • (2014) J. Stat. Comput. Simulat. , vol.84 , pp. 1975
    • Wang, F.K.1    Huang, P.R.2
  • 30
    • 84911396627 scopus 로고    scopus 로고
    • Multivariate lesion-symptom mapping using support vector regression
    • [J]
    • Zhang, Y.S., Kimberg, D.Y., et al. (2014). Multivariate lesion-symptom mapping using support vector regression [J]. Hum. Brain Mapp. 35, 5861.
    • (2014) Hum. Brain Mapp. , vol.35 , pp. 5861
    • Zhang, Y.S.1    Kimberg, D.Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.