메뉴 건너뛰기




Volumn 24, Issue 14, 2003, Pages 2377-2389

Parameter estimation in Markov random field image modeling with imperfect observations. A comparative study

Author keywords

MCMC methods; Monte Carlo likelihood; MRF models; Parameter estimation; Simulation study; Unsupervised image analysis

Indexed keywords

ALGORITHMS; COMPUTER SIMULATION; MARKOV PROCESSES; PARAMETER ESTIMATION;

EID: 0041339533     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0167-8655(03)00067-9     Document Type: Article
Times cited : (34)

References (50)
  • 1
    • 0000925346 scopus 로고
    • Global and local priors, and the location of lesions using gamma-camera imagery
    • Ser. A
    • Aykroyd R.G. Green P. Global and local priors, and the location of lesions using gamma-camera imagery Philos. Trans. Roy. Soc. London, Ser. A 337 1991 323-342
    • (1991) Philos. Trans. Roy. Soc. London , vol.337 , pp. 323-342
    • Aykroyd, R.G.1    Green, P.2
  • 2
    • 0033874010 scopus 로고    scopus 로고
    • Unsupervised image segmentation using Markov random field models
    • Barker S. Rayner P. Unsupervised image segmentation using Markov random field models Pattern Recognition 33 2000 587-602
    • (2000) Pattern Recognition , vol.33 , pp. 587-602
    • Barker, S.1    Rayner, P.2
  • 3
    • 0000582521 scopus 로고
    • Statistical analysis of non-lattice lattice data
    • Besag J. Statistical analysis of non-lattice lattice data Statistician 24 1975 179-195
    • (1975) Statistician , vol.24 , pp. 179-195
    • Besag, J.1
  • 4
    • 0000013152 scopus 로고
    • On the statistical analysis of dirty pictures
    • Besag J. On the statistical analysis of dirty pictures J. Roy. Statist. Soc. Ser. B 48 1986 259-302
    • (1986) J. Roy. Statist. Soc. Ser. B , vol.48 , pp. 259-302
    • Besag, J.1
  • 5
    • 0035294753 scopus 로고    scopus 로고
    • Pattern recognition using Markov random field models
    • Cai J. Liu Z.-Q. Pattern recognition using Markov random field models Pattern Recognition 35 2002 725-733
    • (2002) Pattern Recognition , vol.35 , pp. 725-733
    • Cai, J.1    Liu, Z.-Q.2
  • 6
    • 0002241694 scopus 로고
    • The SEM algorithm: A probabilistic teacher algorithm derived from the EM algorithm for the mixture problem
    • Celeux G. Diebolt J. The SEM algorithm: A probabilistic teacher algorithm derived from the EM algorithm for the mixture problem Comput. Statist. Quart. 2 1985 73-82
    • (1985) Comput. Statist. Quart. , vol.2 , pp. 73-82
    • Celeux, G.1    Diebolt, J.2
  • 7
    • 0042857903 scopus 로고
    • An iterative Gibbsian technique for reconstruction of Mary image
    • Chalmond B. An iterative Gibbsian technique for reconstruction of Mary image Pattern Recognition 15 1989 115-129
    • (1989) Pattern Recognition , vol.15 , pp. 115-129
    • Chalmond, B.1
  • 8
    • 0030393877 scopus 로고    scopus 로고
    • Unsupervised deconvolution of sparse spike train using stochastic approximation
    • Champagnat F. Goussard Y. Idier J. Unsupervised deconvolution of sparse spike train using stochastic approximation IEEE Trans. Signal Process. 44 1996 2988-2998
    • (1996) IEEE Trans. Signal Process. , vol.44 , pp. 2988-2998
    • Champagnat, F.1    Goussard, Y.2    Idier, J.3
  • 10
    • 0003548569 scopus 로고
    • Wiley Series in Probability and Mathematical Statistics
    • Cressie N. Statistics for Spatial Data Wiley Series in Probability and Mathematical Statistics 1993
    • (1993) Statistics for Spatial Data
    • Cressie, N.1
  • 11
  • 12
    • 0002241603 scopus 로고    scopus 로고
    • Stochastic EM: Method and application
    • W. Gilks, S. Richardson, D.J. Spiegelhalter (Eds.), London: Chapman and Hall
    • Diebolt J. Ip E. Stochastic EM: Method and application Gilks W. Richardson S. Spiegelhalter D.J. Markov Chain Monte Carlo in Practice 1996 259-273 Chapman and Hall London
    • (1996) Markov Chain Monte Carlo in Practice , pp. 259-273
    • Diebolt, J.1    Ip, E.2
  • 14
    • 84988121039 scopus 로고
    • Maximum-likelihood estimation for constrained- or missing-data models
    • Gelfand A. Carlin B. Maximum-likelihood estimation for constrained- or missing-data models Can. J. Statist. 21 1993 303-311
    • (1993) Can. J. Statist. , vol.21 , pp. 303-311
    • Gelfand, A.1    Carlin, B.2
  • 15
    • 0022286091 scopus 로고
    • Bayesian image analysis by adaptive annealing
    • Octubre 1985 Amherst, USA: Springer-Verlag
    • Geman D. Bayesian image analysis by adaptive annealing IGARSS'85, Octubre 1985 1985 269-277 Springer-Verlag Amherst, USA
    • (1985) IGARSS'85 , pp. 269-277
    • Geman, D.1
  • 16
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
    • Geman S. Geman D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images IEEE Trans. PAMI 6 1984 721-741
    • (1984) IEEE Trans. PAMI , vol.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 18
    • 0002218961 scopus 로고    scopus 로고
    • Likelihood inference for spatial point processes
    • O. Barndorff-Nielsen, W. Kendall, & M. N. Lieshout (Eds.), Boca Raton, FL: Chapman and Hall/CRC
    • Geyer C. Likelihood inference for spatial point processes Barndorff-Nielsen O. Kendall W. Lieshout M.N.M. Stochastic Geometry 1999 79-140 Chapman and Hall/CRC Boca Raton, FL
    • (1999) Stochastic Geometry , pp. 79-140
    • Geyer, C.1
  • 19
    • 0000051109 scopus 로고
    • Constrained Monte Carlo maximum likelihood for dependent data (with discussion)
    • Geyer C. Thompson E. Constrained Monte Carlo maximum likelihood for dependent data (with discussion) J. Roy. Statist. Soc. Ser. B 54 1992 657-699
    • (1992) J. Roy. Statist. Soc. Ser. B , vol.54 , pp. 657-699
    • Geyer, C.1    Thompson, E.2
  • 20
    • 0002517089 scopus 로고    scopus 로고
    • Introducing Markov chain Monte Carlo
    • W. Gilks, S. Richardson, & D.J. Spiegelhalter (Eds.), London: Chapman and Hall
    • Gilks W. Richardson S. Spiegelhalter D.J. Introducing Markov chain Monte Carlo Gilks W. Richardson S. Spiegelhalter D.J. Markov Chain Monte Carlo in Practice 1996 1-20 Chapman and Hall London
    • (1996) Markov Chain Monte Carlo in Practice , pp. 1-20
    • Gilks, W.1    Richardson, S.2    Spiegelhalter, D.J.3
  • 21
    • 33750907546 scopus 로고    scopus 로고
    • A Markov random field model for automatic speech recognition
    • Sanfeliu, A., Villanueva, J., Vanrell, M., Alquezar, R., Huang, T., (Eds.)
    • Gravier, G., Sigelle, M., Chollet, G., 2000. A Markov random field model for automatic speech recognition. In: Sanfeliu, A., Villanueva, J., Vanrell, M., Alquezar, R., Huang, T., (Eds.), Proc. 15th Internat. Conf. on Pattern Recognition, vol. 3, pp. 258-261
    • (2000) Proc. 15th Internat. Conf. on Pattern Recognition , vol.3 , pp. 258-261
    • Gravier, G.1    Sigelle, M.2    Chollet, G.3
  • 22
    • 0025404969 scopus 로고
    • Bayesian reconstruction from emission tomography data using a modified em algorithm
    • Green P. Bayesian reconstruction from emission tomography data using a modified em algorithm IEEE Trans. Med. Imaging 9 1990 84-93
    • (1990) IEEE Trans. Med. Imaging , vol.9 , pp. 84-93
    • Green, P.1
  • 24
    • 0033076897 scopus 로고    scopus 로고
    • Bayesian detection of the fovea in eye fundus angiographies
    • Ibánez M. Simó A. Bayesian detection of the fovea in eye fundus angiographies Pattern Recognition Lett. 20 1999 229-240
    • (1999) Pattern Recognition Lett. , vol.20 , pp. 229-240
    • Ibánez, M.1    Simó, A.2
  • 25
    • 0036466962 scopus 로고    scopus 로고
    • Hyperparameter estimation for satellite image restoration using a MCMC maximum-likelihood method
    • Jalobeanu A. Blanc-éraud L. Zerubia J. Hyperparameter estimation for satellite image restoration using a MCMC maximum-likelihood method Pattern Recognition 35 2002 341-352
    • (2002) Pattern Recognition , vol.35 , pp. 341-352
    • Jalobeanu, A.1    Blanc-éraud, L.2    Zerubia, J.3
  • 26
    • 0035335847 scopus 로고    scopus 로고
    • Reconstruction of degraded image sequences. Application to film restoration
    • Joyeux L. Boukir S. Besserer B. Buisson O. Reconstruction of degraded image sequences. Application to film restoration Image Vision Comput. 19 2001 503-516
    • (2001) Image Vision Comput. , vol.19 , pp. 503-516
    • Joyeux, L.1    Boukir, S.2    Besserer, B.3    Buisson, O.4
  • 27
    • 0005762708 scopus 로고
    • Application of Bayesian methods to segmentation in medical images
    • P.F. Barone, & M. Piccioni (Eds.), Springer-Verlag
    • Karssemeijer N. Application of Bayesian methods to segmentation in medical images Barone P.F. Piccioni M. Stochastic Models, Statistical Methods, and Algorithms in Image Analysis Lecture Notes in Statistics vol. 74 1992 Springer-Verlag
    • (1992) Stochastic Models, Statistical Methods, and Algorithms in Image Analysis , vol.74
    • Karssemeijer, N.1
  • 29
    • 0033116536 scopus 로고    scopus 로고
    • Unsupervised parallel image classification using Markovian models
    • Kato Z. Zerubia J. Berthod M. Unsupervised parallel image classification using Markovian models Pattern Recognition 32 1999 591-604
    • (1999) Pattern Recognition , vol.32 , pp. 591-604
    • Kato, Z.1    Zerubia, J.2    Berthod, M.3
  • 30
    • 0024715149 scopus 로고
    • Simultaneous parameter estimation and segmentation of Gibbs random fields using simulated annealing
    • Lakshamanan S. Derin H. Simultaneous parameter estimation and segmentation of Gibbs random fields using simulated annealing IEEE Trans. PAMI 11 1989 793-813
    • (1989) IEEE Trans. PAMI , vol.11 , pp. 793-813
    • Lakshamanan, S.1    Derin, H.2
  • 32
    • 0028996955 scopus 로고
    • Improved acoustic modeling for speech recognition using 2D Markov random fields
    • May Detroit, MI
    • Lucke, H. Improved acoustic modeling for speech recognition using 2D Markov random fields. In: ICASSP'95, May 1995, Detroit, MI, pp. 540-543
    • (1995) ICASSP'95 , pp. 540-543
    • Lucke, H.1
  • 33
    • 0034227494 scopus 로고    scopus 로고
    • A Bayesian approach for the estimation and transmission of regularization parameters for reducing blocking artifacts
    • Mateos J. Katsaggelos K.R.M. A Bayesian approach for the estimation and transmission of regularization parameters for reducing blocking artifacts IEEE Trans. Image Process. 9 2000 1200-1215
    • (2000) IEEE Trans. Image Process. , vol.9 , pp. 1200-1215
    • Mateos, J.1    Katsaggelos, K.R.M.2
  • 34
    • 0034229366 scopus 로고    scopus 로고
    • Markov random field and fuzzy logic modeling in sonar imagery: Application to the classification of underwater floor
    • Mignotte M. Collet C. Pérez P. Bouthemy P. Markov random field and fuzzy logic modeling in sonar imagery: Application to the classification of underwater floor Computer Vision and Image Understanding 79 1 2000 4-24
    • (2000) Computer Vision and Image Understanding , vol.79 , Issue.1 , pp. 4-24
    • Mignotte, M.1    Collet, C.2    Pérez, P.3    Bouthemy, P.4
  • 35
    • 0033078391 scopus 로고    scopus 로고
    • Bayesian and regularization methods for hyperparameter estimation in image restoration
    • Molina R. Katsaggelos K. Mateos J. Bayesian and regularization methods for hyperparameter estimation in image restoration IEEE Trans. Image Process. 8 1999 231-246
    • (1999) IEEE Trans. Image Process. , vol.8 , pp. 231-246
    • Molina, R.1    Katsaggelos, K.2    Mateos, J.3
  • 36
    • 0036566979 scopus 로고    scopus 로고
    • A hierarchical Bayesian model for continuous speech recognition
    • Mouria-beji F. A hierarchical Bayesian model for continuous speech recognition Pattern Recognition Lett. 23 2002 773-781
    • (2002) Pattern Recognition Lett. , vol.23 , pp. 773-781
    • Mouria-beji, F.1
  • 37
    • 0012740605 scopus 로고    scopus 로고
    • On simulated EM algorithms
    • Nielsen S. On simulated EM algorithms J. Econ. 96 2000 267-292
    • (2000) J. Econ. , vol.96 , pp. 267-292
    • Nielsen, S.1
  • 38
    • 0036532823 scopus 로고    scopus 로고
    • Mrf-based texture segmentation using wavelet descomposed images
    • Noda H. Shirazi M. Kawaguchi E. Mrf-based texture segmentation using wavelet descomposed images Pattern Recognition 35 2002 771-782
    • (2002) Pattern Recognition , vol.35 , pp. 771-782
    • Noda, H.1    Shirazi, M.2    Kawaguchi, E.3
  • 39
    • 0042857907 scopus 로고
    • Statistical image segmentation
    • May
    • Pieczynski, W. Statistical image segmentation. In: GKPO'92, May 1992
    • (1992) GKPO'92
    • Pieczynski, W.1
  • 40
    • 0033076076 scopus 로고    scopus 로고
    • Monte Carlo EM with importance reweighting and its applications in random effects models
    • Quintana F. Liu J. del Pino G.E. Monte Carlo EM with importance reweighting and its applications in random effects models Comput. Statist. Data Anal. 29 1999 429-444
    • (1999) Comput. Statist. Data Anal. , vol.29 , pp. 429-444
    • Quintana, F.1    Liu, J.2    del Pino, G.E.3
  • 41
    • 0000672899 scopus 로고
    • Extensions of estimation methods using the EM algorithm
    • Ruud P. Extensions of estimation methods using the EM algorithm J. Econom. 49 1991 305-341
    • (1991) J. Econom. , vol.49 , pp. 305-341
    • Ruud, P.1
  • 42
    • 0031189036 scopus 로고    scopus 로고
    • Parameter estimation in hidden fuzzy Markov random fields and image segmentation
    • Salzenstein F. Pieczynski W. Parameter estimation in hidden fuzzy Markov random fields and image segmentation CVGIP: Graph. Models Image Process. 59 1997 205-220
    • (1997) CVGIP: Graph. Models Image Process. , vol.59 , pp. 205-220
    • Salzenstein, F.1    Pieczynski, W.2
  • 43
    • 0032123237 scopus 로고    scopus 로고
    • M.l. Parameter estimation for Markov random fields, with applications to Bayesian tomography
    • Saquib S. Bouman C. Sauer K. M.l. Parameter estimation for Markov random fields, with applications to Bayesian tomography IEEE Trans. Image Process. 7 1998 1029-1044
    • (1998) IEEE Trans. Image Process. , vol.7 , pp. 1029-1044
    • Saquib, S.1    Bouman, C.2    Sauer, K.3
  • 44
    • 0035313888 scopus 로고    scopus 로고
    • Segmentation of macular fluorescein angiographies
    • Simó A. de Ves E. Segmentation of macular fluorescein angiographies Pattern Recognition 34 4 2001 795-809
    • (2001) Pattern Recognition , vol.34 , Issue.4 , pp. 795-809
    • Simó, A.1    de Ves, E.2
  • 45
    • 0026923823 scopus 로고
    • Bayesian estimation of ventricular contours in angiographic images
    • Teles M. Bayesian estimation of ventricular contours in angiographic images IEEE Trans. Med. Imaging 11 3 1992 416-429
    • (1992) IEEE Trans. Med. Imaging , vol.11 , Issue.3 , pp. 416-429
    • Teles, M.1
  • 46
    • 0031503760 scopus 로고    scopus 로고
    • Fully Bayesian reconstruction from single photon emission computed tomography data
    • Weir I. Fully Bayesian reconstruction from single photon emission computed tomography data J. Amer. Statist. Assoc. 92 437 1997 49-60
    • (1997) J. Amer. Statist. Assoc. , vol.92 , Issue.437 , pp. 49-60
    • Weir, I.1
  • 47
    • 0005736062 scopus 로고
    • Modeling data from single-photon emission computed tomography
    • K. Mardia (Ed.)
    • Weir I. Green P. Modeling data from single-photon emission computed tomography Mardia K. Statistics and Images 1994 313-338
    • (1994) Statistics and Images , pp. 313-338
    • Weir, I.1    Green, P.2
  • 48
    • 0034118516 scopus 로고    scopus 로고
    • Unsupervised segmentation using a self-organizing map and a noise model estimation in sonar imagery
    • Yao K. Mignotte M. Collet C. Galerne P. Burel G. Unsupervised segmentation using a self-organizing map and a noise model estimation in sonar imagery Pattern Recognition 33 2000 1575-1584
    • (2000) Pattern Recognition , vol.33 , pp. 1575-1584
    • Yao, K.1    Mignotte, M.2    Collet, C.3    Galerne, P.4    Burel, G.5
  • 50
    • 0042857901 scopus 로고
    • Parameter estimation for imperfectly observed Gibbs fields and some comments on Chalmond's em Gibbsian algorithm
    • Lectures Notes in Statistics, Springer
    • Younes L. Parameter estimation for imperfectly observed Gibbs fields and some comments on Chalmond's em Gibbsian algorithm Stochastic Models, Statistical Methods and Algorithms in Image Analysis Lectures Notes in Statistics vol. 47 1991 240-258 Springer
    • (1991) Stochastic Models, Statistical Methods and Algorithms in Image Analysis , vol.47 , pp. 240-258
    • Younes, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.