메뉴 건너뛰기




Volumn 16, Issue 7, 2015, Pages 1386-1401

Teaching a Machine to Feel Postoperative Pain: Combining High-Dimensional Clinical Data with Machine Learning Algorithms to Forecast Acute Postoperative Pain

Author keywords

Algorithm; Machine Learning; Pain Prediction; Postoperative Pain

Indexed keywords

ACUTE POSTOPERATIVE PAIN; ADULT; ARTICLE; ARTIFICIAL NEURAL NETWORK; COHORT ANALYSIS; DIAGNOSTIC TEST ACCURACY STUDY; FEASIBILITY STUDY; FEMALE; GRADIENT BOOSTED DECISION TREE ALGORITHM; HUMAN; INTERMETHOD COMPARISON; K NEAREST NEIGHBOR; LEARNING ALGORITHM; LEAST ABSOLUTE SHRINKAGE AND SELECTION OPERATOR ALGORITHM; MACHINE LEARNING; MAJOR CLINICAL STUDY; MALE; MEASUREMENT ACCURACY; MIDDLE AGED; PAIN SEVERITY; POSTOPERATIVE PAIN; PREDICTION; RECEIVER OPERATING CHARACTERISTIC; RETROSPECTIVE STUDY; SENSITIVITY AND SPECIFICITY; SUPPORT VECTOR MACHINE; ALGORITHM; DECISION TREE; PAIN, POSTOPERATIVE; STATISTICAL MODEL;

EID: 84947133089     PISSN: 15262375     EISSN: 15264637     Source Type: Journal    
DOI: 10.1111/pme.12713     Document Type: Article
Times cited : (50)

References (42)
  • 1
    • 0041846747 scopus 로고    scopus 로고
    • Postoperative pain experience: Results from a National survey suggest postoperative pain continues to be undermanaged
    • Apfelbaum JL, Chen C, Mehta SS, Gan ATJ. Postoperative pain experience: Results from a National survey suggest postoperative pain continues to be undermanaged. Anesth Analg 2003;97:534-40.
    • (2003) Anesth Analg , vol.97 , pp. 534-540
    • Apfelbaum, J.L.1    Chen, C.2    Mehta, S.S.3    Gan, A.T.J.4
  • 2
    • 33646344701 scopus 로고    scopus 로고
    • Persistent postsurgical pain: Risk factors and prevention
    • Kehlet H, Jensen TS, Woolf CJ. Persistent postsurgical pain: Risk factors and prevention. Lancet 2006;367:1618-5.
    • (2006) Lancet , vol.367 , pp. 1618-1625
    • Kehlet, H.1    Jensen, T.S.2    Woolf, C.J.3
  • 3
    • 70349116096 scopus 로고    scopus 로고
    • Multimodal analgesia for controlling acute postoperative pain
    • Buvanendran A, Kroin JS. Multimodal analgesia for controlling acute postoperative pain. Curr Opin Anaesthesiol 2009;22:588-93.
    • (2009) Curr Opin Anaesthesiol , vol.22 , pp. 588-593
    • Buvanendran, A.1    Kroin, J.S.2
  • 5
    • 69549103237 scopus 로고    scopus 로고
    • Predictors of postoperative pain and analgesic consumption: A qualitative systematic review
    • Ip HYV, Abrishami A, Peng PWH, Wong J, Chung F. Predictors of postoperative pain and analgesic consumption: A qualitative systematic review. Anesthesiology 2009;111:657-77.
    • (2009) Anesthesiology , vol.111 , pp. 657-677
    • Ip, H.Y.V.1    Abrishami, A.2    Peng, P.W.H.3    Wong, J.4    Chung, F.5
  • 6
    • 0141425667 scopus 로고    scopus 로고
    • Preoperative prediction of severe postoperative pain
    • Kalkman CJ, Visser K, Moen J, et al. Preoperative prediction of severe postoperative pain. Pain 2003;105:415-23.
    • (2003) Pain , vol.105 , pp. 415-423
    • Kalkman, C.J.1    Visser, K.2    Moen, J.3
  • 7
    • 40549116369 scopus 로고    scopus 로고
    • The prevalence of postoperative pain in a sample of 1490 surgical inpatients
    • Sommer M, de Rijke JM, van Kleef M, et al. The prevalence of postoperative pain in a sample of 1490 surgical inpatients. Eur J Anaesthesiol 2008;25:267-74.
    • (2008) Eur J Anaesthesiol , vol.25 , pp. 267-274
    • Sommer, M.1    de Rijke, J.M.2    van Kleef, M.3
  • 8
    • 84883746688 scopus 로고    scopus 로고
    • Machine learning and genome annotation: a match meant to be?
    • Yip KY, Cheng C, Gerstein M. Machine learning and genome annotation: a match meant to be? Genome Biol 2013;14:205.
    • (2013) Genome Biol , vol.14 , pp. 205
    • Yip, K.Y.1    Cheng, C.2    Gerstein, M.3
  • 9
    • 84874397060 scopus 로고    scopus 로고
    • Genetic variants and their interactions in disease risk prediction: Machine learning and network perspectives
    • Okser S, Pahikkala T, Aittokallio T. Genetic variants and their interactions in disease risk prediction: Machine learning and network perspectives. BioData Mining 2013;6:1.
    • (2013) BioData Mining , vol.6 , pp. 1
    • Okser, S.1    Pahikkala, T.2    Aittokallio, T.3
  • 10
    • 84876958088 scopus 로고    scopus 로고
    • Machine learning prediction of cancer cell sensitivity to drugs based on genomic and chemical properties
    • Menden MP, Iorio F, Garnett M, et al. Machine learning prediction of cancer cell sensitivity to drugs based on genomic and chemical properties. PLoS One 2013;8:e61318.
    • (2013) PLoS One , vol.8 , pp. e61318
    • Menden, M.P.1    Iorio, F.2    Garnett, M.3
  • 12
    • 33747880992 scopus 로고    scopus 로고
    • Automating the assignment of diagnosis codes to patient encounters using example-based and machine learning techniques
    • Pakhomov SV, Buntrock JD, Chute CG. Automating the assignment of diagnosis codes to patient encounters using example-based and machine learning techniques. J Am Med Inf Assoc 2006;13:516-25.
    • (2006) J Am Med Inf Assoc , vol.13 , pp. 516-525
    • Pakhomov, S.V.1    Buntrock, J.D.2    Chute, C.G.3
  • 13
    • 84881522519 scopus 로고    scopus 로고
    • Using the electronic medical record to identify community-acquired pneumonia: Toward a replicable automated strategy
    • DeLisle S, Kim B, Deepak J, et al. Using the electronic medical record to identify community-acquired pneumonia: Toward a replicable automated strategy. PLoS One 2013;8:e70944.
    • (2013) PLoS One , vol.8 , pp. e70944
    • DeLisle, S.1    Kim, B.2    Deepak, J.3
  • 14
    • 85017808016 scopus 로고    scopus 로고
    • Too Big to Ignore: The Business Case for Big Data-Google Books
    • Phil Simon. Too Big to Ignore: The Business Case for Big Data-Google Books 2013. Available at: http://books.google.com/books?hl=en&lr=&id=Dn-Gdoh66sgC&oi=fnd&pg=PR3&dq=too+big+to+ignore+the+business+case+for+big+data&ots=VH0wrZWms6&sig=bP45pjvVUqqOuzHXWzFgNDtX EpM.
    • (2013)
    • Phil, S.1
  • 15
    • 0000245743 scopus 로고    scopus 로고
    • Statistical modeling: The two cultures
    • Breiman L. Statistical modeling: The two cultures. Stat Sci 2001. doi:10.1006/aama.1996.0501.
    • (2001) Stat Sci
    • Breiman, L.1
  • 16
    • 76749092270 scopus 로고    scopus 로고
    • The WEKA data mining software: An update
    • Hall M, Franke E, Holmes G, et al. The WEKA data mining software: An update. SIGKDD Explor 2009;11:10-8.
    • (2009) SIGKDD Explor , vol.11 , pp. 10-18
    • Hall, M.1    Franke, E.2    Holmes, G.3
  • 18
    • 0033213971 scopus 로고    scopus 로고
    • Stepwise selection in small data sets: A simulation study of bias in logistic regression analysis
    • Steyerberg EW, Eijkemans MJ, Habbema JD. Stepwise selection in small data sets: A simulation study of bias in logistic regression analysis. J Clin Epidemiol 1999;52:935-42.
    • (1999) J Clin Epidemiol , vol.52 , pp. 935-942
    • Steyerberg, E.W.1    Eijkemans, M.J.2    Habbema, J.D.3
  • 19
    • 49549089070 scopus 로고    scopus 로고
    • A survey on statistical methods for health care fraud detection
    • Li J, Huang K-Y, Jin J, Shi J. A survey on statistical methods for health care fraud detection. Health Care Manage Sci 2008;11:275-87.
    • (2008) Health Care Manage Sci , vol.11 , pp. 275-287
    • Li, J.1    Huang, K.-Y.2    Jin, J.3    Shi, J.4
  • 20
    • 0042421807 scopus 로고    scopus 로고
    • Statistical fraud detection: A review
    • Bolton RJ, Hand DJ. Statistical fraud detection: A review. Stat Sci 2002. doi:10.2307/3182781.
    • (2002) Stat Sci
    • Bolton, R.J.1    Hand, D.J.2
  • 21
    • 56449124824 scopus 로고    scopus 로고
    • Simple method for high-performance digit recognition based on sparse coding
    • Labusch K, Barth E, Martinetz T. Simple method for high-performance digit recognition based on sparse coding. IEEE Trans Neural Netw 19:1985-9.
    • IEEE Trans Neural Netw , vol.19 , pp. 1985-1989
    • Labusch, K.1    Barth, E.2    Martinetz, T.3
  • 22
    • 27744552792 scopus 로고    scopus 로고
    • Efficient information theoretic strategies for classifier combination, feature extraction and performance evaluation in improving false positives and false negatives for spam e-mail filtering
    • Zorkadis V, Karras DA, Panayotou M. Efficient information theoretic strategies for classifier combination, feature extraction and performance evaluation in improving false positives and false negatives for spam e-mail filtering. Neural Netw 2005;18:799-807.
    • (2005) Neural Netw , vol.18 , pp. 799-807
    • Zorkadis, V.1    Karras, D.A.2    Panayotou, M.3
  • 23
    • 84910028312 scopus 로고    scopus 로고
    • Meaningful use: A roadmap for the advancement of health information exchange
    • Furukawa MF. Meaningful use: A roadmap for the advancement of health information exchange. Isr J Health Policy Res 2013;2:1.
    • (2013) Isr J Health Policy Res , vol.2 , pp. 1
    • Furukawa, M.F.1
  • 24
    • 80051989195 scopus 로고    scopus 로고
    • Creating a real return-on-investment for information system implementation: Life after HITECH
    • Lai M, Kheterpal S. Creating a real return-on-investment for information system implementation: Life after HITECH. Anesthesiol Clin 2011;29:413-38.
    • (2011) Anesthesiol Clin , vol.29 , pp. 413-438
    • Lai, M.1    Kheterpal, S.2
  • 25
    • 77955295667 scopus 로고    scopus 로고
    • The "meaningful use" regulation for electronic health records
    • Blumenthal D, Tavenner M. The "meaningful use" regulation for electronic health records. N Engl J Med 2010;363:501-4.
    • (2010) N Engl J Med , vol.363 , pp. 501-504
    • Blumenthal, D.1    Tavenner, M.2
  • 26
    • 75649127256 scopus 로고    scopus 로고
    • Predictors of acute postoperative pain after elective surgery
    • Sommer M, de Rijke JM, van Kleef M, et al. Predictors of acute postoperative pain after elective surgery. Clin J Pain 2010;26:87-94.
    • (2010) Clin J Pain , vol.26 , pp. 87-94
    • Sommer, M.1    de Rijke, J.M.2    van Kleef, M.3
  • 27
    • 0141425667 scopus 로고    scopus 로고
    • Preoperative prediction of severe postoperative pain
    • Kalkman CJ, Visser K, Moen J, et al. Preoperative prediction of severe postoperative pain. Pain 2003;105:415-23.
    • (2003) Pain , vol.105 , pp. 415-423
    • Kalkman, C.J.1    Visser, K.2    Moen, J.3
  • 28
    • 0023092594 scopus 로고
    • A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation
    • Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J Chronic Dis 1987;40:373-83.
    • (1987) J Chronic Dis , vol.40 , pp. 373-383
    • Charlson, M.E.1    Pompei, P.2    Ales, K.L.3    MacKenzie, C.R.4
  • 30
    • 52949100612 scopus 로고    scopus 로고
    • Validation, updating and impact of clinical prediction rules: A review
    • Toll DB, Janssen KJM, Vergouwe Y, Moons KGM. Validation, updating and impact of clinical prediction rules: A review. J Clin Epidemiol 2008;61:1085-94.
    • (2008) J Clin Epidemiol , vol.61 , pp. 1085-1094
    • Toll, D.B.1    Janssen, K.J.M.2    Vergouwe, Y.3    Moons, K.G.M.4
  • 31
    • 2442695245 scopus 로고    scopus 로고
    • What you see may not be what you get: A brief, nontechnical introduction to overfitting in regression-type models
    • Babyak MA. What you see may not be what you get: A brief, nontechnical introduction to overfitting in regression-type models. Psychosom Med 2004;66:411-21.
    • (2004) Psychosom Med , vol.66 , pp. 411-421
    • Babyak, M.A.1
  • 32
    • 85017817998 scopus 로고    scopus 로고
    • A closer look at the radial basis function (RBF) networks
    • Tao KM. A closer look at the radial basis function (RBF) networks. Neurocomputing 1997;14:273-88.
    • (1997) Neurocomputing , vol.14 , pp. 273-288
    • Tao, K.M.1
  • 33
    • 17244382596 scopus 로고    scopus 로고
    • Logistic regression and Bayesian networks to study outcomes using large data sets
    • Lee S-M, Abbott P, Johantgen M. Logistic regression and Bayesian networks to study outcomes using large data sets. Nursing Res 2005;54:133-8.
    • (2005) Nursing Res , vol.54 , pp. 133-138
    • Lee, S.-M.1    Abbott, P.2    Johantgen, M.3
  • 34
    • 0033640646 scopus 로고    scopus 로고
    • Statistical pattern recognition: A review
    • Statistical pattern recognition: A review. IEEE Trans Pattern Anal Mach Intell 2000;22(1):4-37.
    • (2000) IEEE Trans Pattern Anal Mach Intell , vol.22 , Issue.1 , pp. 4-37
  • 35
    • 0018079655 scopus 로고
    • Basic principles of ROC analysis
    • Metz CE. Basic principles of ROC analysis. Semin Nucl Med 1978;8:283-98.
    • (1978) Semin Nucl Med , vol.8 , pp. 283-298
    • Metz, C.E.1
  • 36
    • 33644912316 scopus 로고    scopus 로고
    • Measuring diagnostic and predictive accuracy in disease management: An introduction to receiver operating characteristic (ROC) analysis
    • Linden A. Measuring diagnostic and predictive accuracy in disease management: An introduction to receiver operating characteristic (ROC) analysis. J Eval Clin Pract 2006;12:132-9.
    • (2006) J Eval Clin Pract , vol.12 , pp. 132-139
    • Linden, A.1
  • 37
    • 0002900357 scopus 로고    scopus 로고
    • The case against accuracy estimation for comparing induction algorithms
    • Provost FJ, Fawcett T, Kohavi R. The case against accuracy estimation for comparing induction algorithms. ICML 1998.
    • (1998) ICML
    • Provost, F.J.1    Fawcett, T.2    Kohavi, R.3
  • 39
    • 84893858753 scopus 로고    scopus 로고
    • Of rough starts and smooth finishes: Correlations between post-anesthesia care unit and postoperative days 1-5 pain scores
    • Tighe PJ, Harle CA, Boezaart AP, Aytug H, Fillingim R. Of rough starts and smooth finishes: Correlations between post-anesthesia care unit and postoperative days 1-5 pain scores. Pain Med 2014;15:306-15.
    • (2014) Pain Med , vol.15 , pp. 306-315
    • Tighe, P.J.1    Harle, C.A.2    Boezaart, A.P.3    Aytug, H.4    Fillingim, R.5
  • 40
    • 27844587289 scopus 로고    scopus 로고
    • Comparison of the performance of several data mining methods for bad debt recovery in the healthcare industry
    • Zurada J, Lonial S. Comparison of the performance of several data mining methods for bad debt recovery in the healthcare industry. J Appl Business Res 2005:21.
    • (2005) J Appl Business Res , vol.21
    • Zurada, J.1    Lonial, S.2
  • 41
    • 79551582667 scopus 로고    scopus 로고
    • Improving individual measurement of postoperative pain: The pain trajectory
    • Chapman CR, Donaldson GW, Davis JJ, Bradshaw DH. Improving individual measurement of postoperative pain: The pain trajectory. J Pain 2011;12:257-62.
    • (2011) J Pain , vol.12 , pp. 257-262
    • Chapman, C.R.1    Donaldson, G.W.2    Davis, J.J.3    Bradshaw, D.H.4
  • 42


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.