메뉴 건너뛰기




Volumn 54, Issue 2, 2005, Pages 133-138

Logistic regression and Bayesian networks to study outcomes using large data sets

Author keywords

Bayesian network; Large databases; Logistic regression; Nursing research; Outcomes; Prediction

Indexed keywords

ARTICLE; BAYES THEOREM; CLINICAL RESEARCH; DATA ANALYSIS; HEALTH CARE; LINEAR SYSTEM; LOGISTIC REGRESSION ANALYSIS; NONLINEAR SYSTEM; NURSING; OUTCOMES RESEARCH; PREDICTION; STATISTICAL ANALYSIS; STATISTICAL MODEL;

EID: 17244382596     PISSN: 00296562     EISSN: None     Source Type: Journal    
DOI: 10.1097/00006199-200503000-00009     Document Type: Article
Times cited : (26)

References (34)
  • 1
    • 0034573064 scopus 로고    scopus 로고
    • Automatic identification of patients eligible for a pneumonia guideline
    • Aronsky, D., & Haug, P. J. (2000). Automatic identification of patients eligible for a pneumonia guideline. Proceedings/AMIA Symposium, 12-16.
    • (2000) Proceedings/AMIA Symposium , pp. 12-16
    • Aronsky, D.1    Haug, P.J.2
  • 6
    • 0024465979 scopus 로고
    • Future imperfect: The limitations of clinical prediction models and the limits of clinical prediction
    • Diamond, G. A. (1989). Future imperfect: The limitations of clinical prediction models and the limits of clinical prediction. Journal of the American College of Cardiology, 14, 12A-22A.
    • (1989) Journal of the American College of Cardiology , vol.14
    • Diamond, G.A.1
  • 8
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143, 29-36.
    • (1982) Radiology , vol.143 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 9
    • 0020524559 scopus 로고
    • A method of comparing the areas under receiver operating characteristic curves derived from the same cases
    • Hanley, J. A., & McNeil, B. J. (1983). A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology, 148, 839-843.
    • (1983) Radiology , vol.148 , pp. 839-843
    • Hanley, J.A.1    McNeil, B.J.2
  • 10
    • 0021857146 scopus 로고
    • Regression models for prognostic prediction: Advantages, problems, and suggested solutions
    • Harrell, F. E., Lee, K. L., Matchar, D. B., & Reichert, T. A. (1985). Regression models for prognostic prediction: Advantages, problems, and suggested solutions. Cancer Treatment Reports, 69, 1071-1077.
    • (1985) Cancer Treatment Reports , vol.69 , pp. 1071-1077
    • Harrell, F.E.1    Lee, K.L.2    Matchar, D.B.3    Reichert, T.A.4
  • 12
    • 0000868434 scopus 로고    scopus 로고
    • Bayesian networks for knowledge discovery
    • U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, & R. Uthurusamy (Eds.), Menlo Park, CA: The MIT Press
    • Heckerman, D. E. (1996). Bayesian networks for knowledge discovery. In U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, & R. Uthurusamy (Eds.), Advances in knowledge discovery and data mining (pp. 273-305). Menlo Park, CA: The MIT Press.
    • (1996) Advances in Knowledge Discovery and Data Mining , pp. 273-305
    • Heckerman, D.E.1
  • 14
    • 84872170445 scopus 로고
    • Goodness of fit tests for the multiple logistic regression model
    • Hosmer, D. W., & Lemeshow, S. (1980). Goodness of fit tests for the multiple logistic regression model. Communications in Statistics, A9, 1043-1069.
    • (1980) Communications in Statistics , vol.A9 , pp. 1043-1069
    • Hosmer, D.W.1    Lemeshow, S.2
  • 20
    • 0344760893 scopus 로고    scopus 로고
    • A Bayesian framework to determine patient compliance in glaucoma cases
    • Korrapati, R., Mukherjee, S., & Chalam, K. V. (2000). A Bayesian framework to determine patient compliance in glaucoma cases. Proceedings/AMIA Symposium, 1050.
    • (2000) Proceedings/AMIA Symposium , pp. 1050
    • Korrapati, R.1    Mukherjee, S.2    Chalam, K.V.3
  • 21
    • 58149210716 scopus 로고
    • The EM algorithm for graphical association models with missing data
    • Lauritzen, S. L. (1995). The EM algorithm for graphical association models with missing data. Computational Statistics and Data Analysis, 19, 191-201.
    • (1995) Computational Statistics and Data Analysis , vol.19 , pp. 191-201
    • Lauritzen, S.L.1
  • 22
    • 0001006209 scopus 로고
    • Local computations with probabilities on graphical structures and their application to expert systems
    • Lauritzen, S. L., & Spiegelhalter, D. J. (1988). Local computations with probabilities on graphical structures and their application to expert systems. Journal of the Royal Statistical Society Series B, 50, 157-194.
    • (1988) Journal of the Royal Statistical Society Series B , vol.50 , pp. 157-194
    • Lauritzen, S.L.1    Spiegelhalter, D.J.2
  • 23
    • 0344309883 scopus 로고    scopus 로고
    • Bayesian networks for knowledge discovery in large datasets: Basics for nurse researchers
    • Lee, S. M., & Abbott, P. A. (2003). Bayesian networks for knowledge discovery in large datasets: Basics for nurse researchers. Journal of Biomedical Informatics, 36, 389-399.
    • (2003) Journal of Biomedical Informatics , vol.36 , pp. 389-399
    • Lee, S.M.1    Abbott, P.A.2
  • 24
    • 17244370007 scopus 로고    scopus 로고
    • Missing data in nursing research: Review of issues and treatment strategies
    • Lee, S-M., Kim, Y., & Peragallo, N. (2003). Missing data in nursing research: Review of issues and treatment strategies. Hispanic Health Care International, 2, 31-38.
    • (2003) Hispanic Health Care International , vol.2 , pp. 31-38
    • Lee, S.-M.1    Kim, Y.2    Peragallo, N.3
  • 25
    • 0020063002 scopus 로고
    • A review of goodness of fit statistics for use in the development of logistic regression models
    • Lemeshow, S., & Hosmer, D. W., Jr. (1982). A review of goodness of fit statistics for use in the development of logistic regression models. American Journal of Epidemiology, 115, 92-106.
    • (1982) American Journal of Epidemiology , vol.115 , pp. 92-106
    • Lemeshow, S.1    Hosmer Jr., D.W.2
  • 26
    • 0028482687 scopus 로고
    • Partitioned mixture distribution: An adaptive Bayesian network for low-level image processing
    • Luttrell, S. P. (1994). Partitioned mixture distribution: An adaptive Bayesian network for low-level image processing. IEE Proceedings on Vision, Image and Signal Processing, 141, 251-260.
    • (1994) IEE Proceedings on Vision, Image and Signal Processing , vol.141 , pp. 251-260
    • Luttrell, S.P.1
  • 29
    • 0033035817 scopus 로고    scopus 로고
    • Development of a Bayesian network for the prognosis of head injuries using graphical model selection techniques
    • Sakellaropoulos, G. C., & Nikiforidis, G. C. (1999). Development of a Bayesian network for the prognosis of head injuries using graphical model selection techniques. Methods of Information in Medicine, 38, 37-42.
    • (1999) Methods of Information in Medicine , vol.38 , pp. 37-42
    • Sakellaropoulos, G.C.1    Nikiforidis, G.C.2
  • 32
    • 0033213971 scopus 로고    scopus 로고
    • Stepwise selection in small data sets: A simulation study of bias in logistic regression analysis
    • Steyerberg, E. W., Eijkemans, M. J., & Habbema, J. D. (1999). Stepwise selection in small data sets: A simulation study of bias in logistic regression analysis. Journal of Clinical Epidemiology, 52, 935-942.
    • (1999) Journal of Clinical Epidemiology , vol.52 , pp. 935-942
    • Steyerberg, E.W.1    Eijkemans, M.J.2    Habbema, J.D.3
  • 34
    • 0033257499 scopus 로고    scopus 로고
    • Classification algorithms applied to narrative reports
    • Wilcox, A., & Hripcsak, G. (1999). Classification algorithms applied to narrative reports. Proceedings/AMIA Symposium, 455-459.
    • (1999) Proceedings/AMIA Symposium , pp. 455-459
    • Wilcox, A.1    Hripcsak, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.