메뉴 건너뛰기




Volumn 8, Issue 4, 2012, Pages 935-943

A new dimensionality reduction algorithm for hyperspectral image using evolutionary strategy

Author keywords

Band selection; classification; immune clonal strategy; optimization

Indexed keywords

ANT COLONY OPTIMIZATION (ACO); BAND SELECTION; COMPLEX COMPUTATION; COMPUTATIONAL BURDEN; DATA SETS; DIMENSIONALITY REDUCTION ALGORITHMS; ENUMERATIVE METHOD; EVOLUTIONARY STRATEGIES; HYPER-SPECTRAL IMAGES; HYPERSPECTRAL IMAGE CLASSIFICATION; IMMUNE CLONAL STRATEGIES; SELF ORGANIZING; SEPARABILITY INDEX; SPECTRAL INFORMATION; STOCHASTIC ALGORITHMS; WASHINGTON;

EID: 84867975740     PISSN: 15513203     EISSN: None     Source Type: Journal    
DOI: 10.1109/TII.2012.2205397     Document Type: Article
Times cited : (68)

References (36)
  • 1
    • 75449105199 scopus 로고    scopus 로고
    • A twostep optimization procedure for assessing water constituent concentrations by hyperspectral remote sensing techniques: An application to the highly turbid venice lagoon waters
    • Apr
    • F. Santini, L. Alberotanza, R. M. Cavalli, and S. Pignatti, "A twostep optimization procedure for assessing water constituent concentrations by hyperspectral remote sensing techniques: An application to the highly turbid venice lagoon waters," Remote Sens. Environ., vol. 114, no. 4, pp. 887-898, Apr. 2010.
    • (2010) Remote Sens. Environ , vol.114 , Issue.4 , pp. 887-898
    • Santini, F.1    Alberotanza, L.2    Cavalli, R.M.3    Pignatti, S.4
  • 2
    • 84867978110 scopus 로고    scopus 로고
    • Mapping post-fire forest regeneration and vegetation recovery using a combination of very high spatial resolution and hyperspectral satellite imagery
    • to be published
    • G. H. Mitri and I. Z. Gitas, "Mapping post-fire forest regeneration and vegetation recovery using a combination of very high spatial resolution and hyperspectral satellite imagery," Int. J. Appl. Earth Observ. Geoinform., to be published.
    • Int. J. Appl. Earth Observ. Geoinform
    • Mitri, G.H.1    Gitas, I.Z.2
  • 3
    • 76049128596 scopus 로고    scopus 로고
    • Monitoring canopy biophysical and biochemical parameters in ecosystem scale using satellite hyperspectral imagery: An application on a Phlomis Fruticosa Mediterranean ecosystem using multiangular CHRIS/PROBA observations
    • May
    • S. Stagakis, N. Markos, O. Sykioti, and A. Kyparissis, "Monitoring canopy biophysical and biochemical parameters in ecosystem scale using satellite hyperspectral imagery: An application on a Phlomis Fruticosa Mediterranean ecosystem using multiangular CHRIS/PROBA observations," Remote Sens. Environ., vol. 114, no. 5, pp. 977-994, May 2010.
    • (2010) Remote Sens. Environ , vol.114 , Issue.5 , pp. 977-994
    • Stagakis, S.1    Markos, N.2    Sykioti, O.3    Kyparissis, A.4
  • 6
    • 38349181507 scopus 로고    scopus 로고
    • A fast separability-based feature-selection method for high-dimensional remotely sensed image classification
    • May
    • G. Baofeng, R. I. Damper, R. G. Steve, and J. D. B. Nelson, "A fast separability-based feature-selection method for high-dimensional remotely sensed image classification," Pattern Recognit., vol. 41, no. 5, pp. 1653-1662, May 2008.
    • (2008) Pattern Recognit , vol.41 , Issue.5 , pp. 1653-1662
    • Baofeng, G.1    Damper, R.I.2    Steve, R.G.3    Nelson, J.D.B.4
  • 7
    • 67650234021 scopus 로고    scopus 로고
    • Three decades of hyperspectral remote sensing of the earth: A personal view
    • Sep
    • F. H. G. Alexander, "Three decades of hyperspectral remote sensing of the earth: A personal view," Remote Sens. Environ., vol. 113, no. 1, pp. S5-S16, Sep. 2009.
    • (2009) Remote Sens. Environ , vol.113 , Issue.1
    • Alexander, F.H.G.1
  • 8
    • 56749172068 scopus 로고    scopus 로고
    • Level set hyperspectral image classification using best band analysis
    • Oct
    • J. Ball and L. Bruce, "Level set hyperspectral image classification using best band analysis," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 10, pp. 3022-3027, Oct. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens , vol.45 , Issue.10 , pp. 3022-3027
    • Ball, J.1    Bruce, L.2
  • 9
    • 84861192230 scopus 로고    scopus 로고
    • Using hurst and Lyapunov exponent for hyperspectral image feature extraction
    • Jul
    • J. Yin, C. Gao, and X. Jia, "Using hurst and Lyapunov exponent for hyperspectral image feature extraction," IEEE Geosi. Remote Sens. Lett., vol. 9, no. 4, pp. 705-709, Jul. 2012.
    • (2012) IEEE Geosi. Remote Sens. Lett , vol.9 , Issue.4 , pp. 705-709
    • Yin, J.1    Gao, C.2    Jia, X.3
  • 11
    • 34547672308 scopus 로고    scopus 로고
    • Parallel and adaptive reduction of hyperspectral data to intrinsic dimensionality
    • Newport Beach, CA Oct
    • T. El-Ghazawi, S. Kaewpijit, and J. Le Moigne, "Parallel and adaptive reduction of hyperspectral data to intrinsic dimensionality," in Proc. Int. Conf. Cluster Comput., Newport Beach, CA, Oct. 2001, pp. 102-109.
    • (2001) Proc. Int. Conf. Cluster Comput , pp. 102-109
    • El-Ghazawi, T.1    Kaewpijit, S.2    Le Moigne, J.3
  • 13
    • 0036821665 scopus 로고    scopus 로고
    • Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction
    • Oct
    • L. Bruce, C. Koger, and J. Li, "Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction," IEEE Trans. Geosci. Remote Sens., vol. 40, no. 10, pp. 2331-2338,Oct. 2002.
    • (2002) IEEE Trans. Geosci. Remote Sens , vol.40 , Issue.10 , pp. 2331-2338
    • Bruce, L.1    Koger, C.2    Li, J.3
  • 14
    • 34447248805 scopus 로고    scopus 로고
    • A hyperspectral band selector for plant species discrimination
    • Aug
    • V. Chaichoke, K. S. Andrew, F. D. B. Willem, and V. Tanasak, "A hyperspectral band selector for plant species discrimination," Photogrammetry Remote Sens., vol. 62, no. 3, pp. 225-235, Aug. 2007.
    • (2007) Photogrammetry Remote Sens , vol.62 , Issue.3 , pp. 225-235
    • Chaichoke, V.1    Andrew, K.S.2    Willem, F.D.B.3    Tanasak, V.4
  • 15
    • 34249865650 scopus 로고    scopus 로고
    • Feature extraction of hyperspectral images using wavelet and matching pursuit
    • Jun
    • H. Paihui, "Feature extraction of hyperspectral images using wavelet and matching pursuit," Photogrammetry Remote Sens., vol. 62, no. 2, pp. 78-92, Jun. 2007.
    • (2007) Photogrammetry Remote Sens , vol.62 , Issue.2 , pp. 78-92
    • Paihui, H.1
  • 16
    • 84858082257 scopus 로고    scopus 로고
    • Free search with adaptive differential evolution exploitation and quantum-inspired exploration
    • May
    • J. Yin, Y. Wang, and J. Hu, "Free search with adaptive differential evolution exploitation and quantum-inspired exploration," J. Netw.Comput. Appl., vol. 35, no. 3, pp. 1035-1051, May 2012.
    • (2012) J. Netw.Comput. Appl , vol.35 , Issue.3 , pp. 1035-1051
    • Yin, J.1    Wang, Y.2    Hu, J.3
  • 17
    • 79955816230 scopus 로고    scopus 로고
    • Modeling and control of a plastic film manufacturing web process
    • May
    • H. Sung-Ho, K. Reza, and T. Andrew, "Modeling and control of a plastic film manufacturing web process," IEEE Trans. Ind. Informat., vol. 7, no. 2, pp. 171-178, May 2011.
    • (2011) IEEE Trans. Ind. Informat , vol.7 , Issue.2 , pp. 171-178
    • Sung-Ho, H.1    Reza, K.2    Andrew, T.3
  • 18
    • 79951576392 scopus 로고    scopus 로고
    • Modeling of a liquid epoxy molding process using a particle swarm optimization-based fuzzy regression approach
    • Feb
    • C. Kit-Yan, T. S. Dillon, and C. K. Kwong, "Modeling of a liquid epoxy molding process using a particle swarm optimization-based fuzzy regression approach," IEEE Trans. Ind. Informat., vol. 7, no. 1, pp. 148-158, Feb. 2011.
    • (2011) IEEE Trans. Ind. Informat , vol.7 , Issue.1 , pp. 148-158
    • Kit-Yan, C.1    Dillon, T.S.2    Kwong, C.K.3
  • 19
    • 80051780804 scopus 로고    scopus 로고
    • Energy-efficient coverage of wireless sensor networks using ant colony optimization with three types of pheromones
    • Aug
    • L. Joon-Woo, C. Byoung-Suk, and L. Ju-Jang, "Energy-efficient coverage of wireless sensor networks using ant colony optimization with three types of pheromones," IEEE Trans. Ind. Informat., vol. 7, no. 3, pp. 419-427, Aug. 2011.
    • (2011) IEEE Trans. Ind. Informat , vol.7 , Issue.3 , pp. 419-427
    • Joon-Woo, L.1    Byoung-Suk, C.2    Ju-Jang, L.3
  • 20
    • 54049096708 scopus 로고    scopus 로고
    • Artificial immune system for multi-objective design optimization of composite structures
    • Dec
    • S. N. Omkar, R. Khandelwal, S. Yathindra, G. N. Naik, and S. Gopalakrishnan, "Artificial immune system for multi-objective design optimization of composite structures," Eng. Appl. Artif. Intell., vol. 21, no. 8, pp. 1416-1429, Dec. 2008.
    • (2008) Eng. Appl. Artif. Intell , vol.21 , Issue.8 , pp. 1416-1429
    • Omkar, S.N.1    Khandelwal, R.2    Yathindra, S.3    Naik, G.N.4    Gopalakrishnan, S.5
  • 21
    • 36049007748 scopus 로고    scopus 로고
    • An evolutionary artificial immune system for multi-objective optimization
    • DOI 10.1016/j.ejor.2007.02.047, PII S0377221707002950
    • K. C. Tan, C. K. Goh, A. A. Mamun, and E. Z. Ei, "An evolutionary artificial immune system for multi-objective optimization," Operational Res., vol. 187, no. 2, pp. 371-392, Jun. 2008. (Pubitemid 350102850)
    • (2008) European Journal of Operational Research , vol.187 , Issue.2 , pp. 371-392
    • Tan, K.C.1    Goh, C.K.2    Mamun, A.A.3    Ei, E.Z.4
  • 22
    • 0036613006 scopus 로고    scopus 로고
    • Learning and optimization using the clonal selection principle
    • DOI 10.1109/TEVC.2002.1011539, PII S1089778X02060654
    • L. N. De Castro and F. J. Von Zuben, "Learning and optimization using the clonal selection principle," IEEE Trans. Evol.Comput., vol. 6, no. 3, pp. 239-251, Jun. 2002. (Pubitemid 34867248)
    • (2002) IEEE Transactions on Evolutionary Computation , vol.6 , Issue.3 , pp. 239-251
    • De Castro, L.N.1    Von Zuben, F.J.2
  • 23
    • 75149158852 scopus 로고    scopus 로고
    • Baldwinian learning in clonal selection algorithm for optimization
    • Apr
    • M. Gong, L. Jiao, and L. Zhang, "Baldwinian learning in clonal selection algorithm for optimization," Inform. Sci., vol. 180, no. 8, pp. 1218-1236, Apr. 2010.
    • (2010) Inform. Sci , vol.180 , Issue.8 , pp. 1218-1236
    • Gong, M.1    Jiao, L.2    Zhang, L.3
  • 24
    • 55649124564 scopus 로고    scopus 로고
    • Similarity-based unsupervised band selection for hyperspectral image analysis
    • Oct
    • Q. Du and H. Yang, "Similarity-based unsupervised band selection for hyperspectral image analysis," IEEE Geosci. Remote Sens. Lett., vol. 5, no. 4, pp. 564-568, Oct. 2008.
    • (2008) IEEE Geosci. Remote Sens. Lett , vol.5 , Issue.4 , pp. 564-568
    • Du, Q.1    Yang, H.2
  • 26
    • 34249808788 scopus 로고    scopus 로고
    • Comparing binary and real-valued coding in hybrid immune algorithm for feature selection and classification of ECG signals
    • DOI 10.1016/j.engappai.2006.11.004, PII S0952197606002077, Soft Computing Applications
    • M. Bereta and B. Tadeusz, "Comparing binary and real-valued coding in hybrid immune algorithm for feature selection and classification of ECG signals," Eng. Appl. Artif. Intell., vol. 20, no. 5, pp. 571-585, Aug. 2007. (Pubitemid 46856150)
    • (2007) Engineering Applications of Artificial Intelligence , vol.20 , Issue.5 , pp. 571-585
    • Bereta, M.1    Burczynski, T.2
  • 27
    • 0242458468 scopus 로고    scopus 로고
    • Supervised band selection for optimal use of data from airborne hyperspectral sensors
    • Toulouse, France Jul
    • M. Riedmann and E. J. Milton, "Supervised band selection for optimal use of data from airborne hyperspectral sensors," in Proc. Int. Symp. Geosci. Remote Sens., Toulouse, France, Jul. 2003, pp. 1770-1772.
    • (2003) Proc. Int. Symp. Geosci. Remote Sens , pp. 1770-1772
    • Riedmann, M.1    Milton, E.J.2
  • 28
    • 84945252151 scopus 로고    scopus 로고
    • The spectral similarity scale and its application to the classification of hyperspectral remote sensing data
    • Washington, DC Oct
    • J. N. Sweet, "The spectral similarity scale and its application to the classification of hyperspectral remote sensing data," in Proc. Workshop Adv. Techn. Anal. Remotely Sensed Data,Washington, DC, Oct. 2003, pp. 92-99.
    • (2003) Proc. Workshop Adv. Techn. Anal. Remotely Sensed Data , pp. 92-99
    • Sweet, J.N.1
  • 29
    • 33846914889 scopus 로고    scopus 로고
    • Contaminant Classification of Poultry Hyperspectral Imagery using a Spectral Angle Mapper Algorithm
    • DOI 10.1016/j.biosystemseng.2006.11.012, PII S1537511006004065
    • B. Park, W. R. Windham, K. C. Lawrence, and D. P. Smith, "Contaminant classification of poultry hyperspectral imagery using a spectral angle mapper algorithm," Biosyst. Eng., vol. 96, no. 3, pp. 323-333, Mar. 2007. (Pubitemid 46241050)
    • (2007) Biosystems Engineering , vol.96 , Issue.3 , pp. 323-333
    • Park, B.1    Windham, W.R.2    Lawrence, K.C.3    Smith, D.P.4
  • 30
    • 0242446851 scopus 로고    scopus 로고
    • Spectral correlation mapper (SCM): An improvement on the spectral angle mapper (SAM)
    • Pasadena, CA [Online]
    • O. A. De Carvalho and P. R. Meneses, "Spectral correlation mapper (SCM): An improvement on the spectral angle mapper (SAM)," in Proc. Workshop Airborne Geoscience, Pasadena, CA, 2000 [Online]. Available: ftp://geo. arc. nasa.gov/pub/stevek/Spectral\%20Correlation/Osmar-1-carvalho-web. pdf
    • (2000) Proc. Workshop Airborne Geoscience
    • De Carvalho, O.A.1    Meneses, P.R.2
  • 31
    • 0344235282 scopus 로고    scopus 로고
    • Unsupervised subspace linear spectral mixture analysis for hyperspectral images
    • Barcelona, Spain Sep
    • Y. Gu and Y. Zhang, "Unsupervised subspace linear spectral mixture analysis for hyperspectral images," in Proc. Int. Conf. Image Process., Barcelona, Spain, Sep. 2003, pp. 801-804.
    • (2003) Proc. Int. Conf. Image Process , pp. 801-804
    • Gu, Y.1    Zhang, Y.2
  • 32
    • 0001953837 scopus 로고
    • Genetic algorithms for multi-objective optimization: Formulaton, discussion and generalization
    • Urbana-Champaign, IL Jun
    • C. M. Fonseca and P. J. Fleming, "Genetic algorithms for multi-objective optimization: Formulaton, discussion and generalization," in Proc. Int. Conf. Genet. Algorithms, Urbana-Champaign, IL, Jun. 1993, pp. 416-423.
    • (1993) Proc. Int. Conf. Genet. Algorithms , pp. 416-423
    • Fonseca, C.M.1    Fleming, P.J.2
  • 33
    • 0002629429 scopus 로고
    • An overview of evolutionary algorithms in multi-objective optimization
    • Apr
    • C. M. Fonseca and P. J. Fleming, "An overview of evolutionary algorithms in multi-objective optimization," Evol.Comput., vol. 3, no. 1, pp. 1-16, Apr. 1995.
    • (1995) Evol.Comput , vol.3 , Issue.1 , pp. 1-16
    • Fonseca, C.M.1    Fleming, P.J.2
  • 34
    • 77954904859 scopus 로고    scopus 로고
    • Optimal band selection for hyperspectral image classification based on inter-class separability
    • Beijing, China Sep
    • J. Yin, Y. W. Yisong, and Z. Zhao, "Optimal band selection for hyperspectral image classification based on inter-class separability," in Proc. Symp. Photon. Optoelectron., Beijing, China, Sep. 2010, pp. 1-4.
    • (2010) Proc. Symp. Photon. Optoelectron , pp. 1-4
    • Yin, J.1    Yisong, Y.W.2    Zhao, Z.3
  • 35
    • 0032737410 scopus 로고    scopus 로고
    • Segmented principal components transformation for efficient hyperspectral remote sensing image display and classification
    • Jan
    • X. Jia and J. A. Richards, "Segmented principal components transformation for efficient hyperspectral remote sensing image display and classification," IEEE Trans. Geosci. Remote Sens., vol. 37, no. 1, pp. 538-542, Jan. 1999.
    • (1999) IEEE Trans. Geosci. Remote Sens , vol.37 , Issue.1 , pp. 538-542
    • Jia, X.1    Richards, J.A.2
  • 36
    • 27744479257 scopus 로고    scopus 로고
    • Fuzzy-based refinement of the fault diagnosis task in industrial devices
    • DOI 10.1007/s10845-005-4365-z
    • C. D. Bocaniala, J. Sa Da Costa, and V. Palade, "Fuzzy based refinement of the fault diagnosis task in industrial devices," J. Intell. Manufact., vol. 16, no. 6, pp. 599-614, Dec. 2005. (Pubitemid 41605677)
    • (2005) Journal of Intelligent Manufacturing , vol.16 , Issue.6 , pp. 599-614
    • Bocaniala, C.D.1    Sa Da Costa, J.2    Palade, V.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.