메뉴 건너뛰기




Volumn , Issue , 2014, Pages 312-317

Uncertainty quantified matrix completion using bayesian hierarchical matrix factorization

Author keywords

Bayesian Analysis; Probabilistic Matrix Factorization; Uncertainty Quantification

Indexed keywords

ARTIFICIAL INTELLIGENCE; DIRECTED GRAPHS; FACTORIZATION; FORECASTING; LEARNING SYSTEMS; TREES (MATHEMATICS); UNCERTAINTY ANALYSIS;

EID: 84946687210     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICMLA.2014.56     Document Type: Conference Paper
Times cited : (22)

References (28)
  • 1
    • 79957965204 scopus 로고    scopus 로고
    • Try-A global database of plant traits
    • J. Kattge, S. Diaz, S. Lavorel et al. , Try-A global database of plant traits, Global Change Biology, vol. 17, no. 9, pp. 2905-2935, 2011
    • (2011) Global Change Biology , vol.17 , Issue.9 , pp. 2905-2935
    • Kattge, J.1    Diaz, S.2    Lavorel, S.3
  • 2
    • 84876683706 scopus 로고    scopus 로고
    • Do plant traits retrieved from a database accurately predict on-site measurements?
    • V. Cordlandwehr, R. L. Meredith et al. , Do plant traits retrieved from a database accurately predict on-site measurements? Journal of Ecology, vol. 101, no. 3, pp. 662-670, 2013
    • (2013) Journal of Ecology , vol.101 , Issue.3 , pp. 662-670
    • Cordlandwehr, V.1    Meredith, R.L.2
  • 3
    • 79952446835 scopus 로고    scopus 로고
    • Scalable tensor factorizations with missing data
    • E. Acar, D. M. Dunlavy, T. G. Kolda, and M. Mrup, Scalable tensor factorizations with missing data, in SDM, 2010
    • (2010) SDM
    • Acar, E.1    Dunlavy, D.M.2    Kolda, T.G.3    Mrup, M.4
  • 4
    • 85008044987 scopus 로고    scopus 로고
    • Matrix factorization techniques for recommender systems
    • Y. Koren, R. Bell, and C. Volinsky, Matrix Factorization Techniques for Recommender Systems, IEEE Computer, 2009
    • (2009) IEEE Computer
    • Koren, Y.1    Bell, R.2    Volinsky, C.3
  • 5
    • 71149119166 scopus 로고    scopus 로고
    • Non-linear matrix factorization with gaussian processes
    • N. Lawrence and R. Urtasun, Non-linear Matrix Factorization with Gaussian Processes, in ICML, 2009
    • (2009) ICML
    • Lawrence, N.1    Urtasun, R.2
  • 6
    • 85071783077 scopus 로고    scopus 로고
    • Bayesian matrix factorization with side information and dirichlet process mixtures
    • I. Porteous, A. Asuncion, and M. Welling, Bayesian matrix factorization with side information and dirichlet process mixtures, in AAAI, 2010
    • (2010) AAAI
    • Porteous, I.1    Asuncion, A.2    Welling, M.3
  • 7
    • 48349135120 scopus 로고    scopus 로고
    • Probabilistic matrix factorization
    • R. Salakhutdinov and A. Mnih, Probabilistic Matrix Factorization, in NIPS, 2007
    • (2007) NIPS
    • Salakhutdinov, R.1    Mnih, A.2
  • 8
    • 56449131205 scopus 로고    scopus 로고
    • Bayesian probabilistic matrix factorization using markov chain Monte Carlo
    • R. Salakhutdinov and A. Mnih, Bayesian Probabilistic Matrix Factorization using Markov Chain Monte Carlo, in ICML, 2008
    • (2008) ICML
    • Salakhutdinov, R.1    Mnih, A.2
  • 10
    • 85161986396 scopus 로고    scopus 로고
    • Collaborative filtering in a nonuniform world: Learning with the weighted trace norm
    • R. Salakhutdinov and N. Srebro, Collaborative filtering in a nonuniform world: Learning with the weighted trace norm, in NIPS, 2010
    • (2010) NIPS
    • Salakhutdinov, R.1    Srebro, N.2
  • 11
    • 77951137606 scopus 로고    scopus 로고
    • Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization
    • J. Wright, A. Ganesh, S. Rao, Y. Peng, and Y. Ma, Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization, Journal of the ACM, 2009
    • (2009) Journal of the ACM
    • Wright, J.1    Ganesh, A.2    Rao, S.3    Peng, Y.4    Ma, Y.5
  • 13
    • 84867133484 scopus 로고    scopus 로고
    • Gap filling in the plant kingdom-trait prediction using hierarchical probabilistic matrix factorization
    • H. Shan, J. Kattge, P. B. Reich, A. Banerjee, F. Schrodt, and M. Reichstein, Gap filling in the plant kingdom-trait prediction using hierarchical probabilistic matrix factorization, ICML, 2012
    • (2012) ICML
    • Shan, H.1    Kattge, J.2    Reich, P.B.3    Banerjee, A.4    Schrodt, F.5    Reichstein, M.6
  • 14
    • 80052679175 scopus 로고    scopus 로고
    • Response prediction using collaborative filtering with hierarchies and side-information
    • A. K. Menon, K. Chitrapura, S. Garg, D. Agarwal, and N. Kota, Response prediction using collaborative filtering with hierarchies and side-information, in KDD. ACM, 2011, pp. 141-149
    • (2011) KDD ACM , pp. 141-149
    • Menon, A.K.1    Chitrapura, K.2    Garg, S.3    Agarwal, D.4    Kota, N.5
  • 15
    • 80052414926 scopus 로고    scopus 로고
    • Online variational inference for the hierarchical dirichlet process
    • C. Wang, J. Paisley, and D. Blei, Online variational inference for the hierarchical dirichlet process, in AISTATS, 2011
    • (2011) AISTATS
    • Wang, C.1    Paisley, J.2    Blei, D.3
  • 16
    • 0034853839 scopus 로고    scopus 로고
    • A rank minimization heuristic with application to minimum order system approximation
    • M. Fazel, H. Hindi, and S. Boyd, A rank minimization heuristic with application to minimum order system approximation, in ACC, vol. 6. IEEE, 2001, pp. 4734-4739
    • (2001) ACC IEEE , vol.6 , pp. 4734-4739
    • Fazel, M.1    Hindi, H.2    Boyd, S.3
  • 17
    • 84898932317 scopus 로고    scopus 로고
    • Maximum-margin matrix factorization
    • N. Srebro, J. Rennie, and T. Jaakkola, Maximum-Margin Matrix Factorization, in NIPS, 2005
    • (2005) NIPS
    • Srebro, N.1    Rennie, J.2    Jaakkola, T.3
  • 18
    • 84858720748 scopus 로고    scopus 로고
    • Modelling relational data using bayesian clustered tensor Facotrization
    • I. Sutskever, R. Salakhutdinov, and J. Tenenbaum, Modelling Relational Data using Bayesian Clustered Tensor Facotrization, in NIPS, 2009
    • (2009) NIPS
    • Sutskever, I.1    Salakhutdinov, R.2    Tenenbaum, J.3
  • 19
    • 80052121737 scopus 로고    scopus 로고
    • Temporal collaborative filtering with bayesian probabilistic tensor factorization
    • L. Xiong, X. Chen, T. Huang, J. G. Schneider, and J. G. Carbonell, Temporal collaborative filtering with bayesian probabilistic tensor factorization, in SDM, 2010
    • (2010) SDM
    • Xiong, L.1    Chen, X.2    Huang, T.3    Schneider, J.G.4    Carbonell, J.G.5
  • 20
    • 79951750366 scopus 로고    scopus 로고
    • Generalized probabilistic matrix factorizations for collaborative Filtering
    • H. Shan and A. Banerjee, Generalized Probabilistic Matrix Factorizations for Collaborative Filtering, in ICDM, 2010
    • (2010) ICDM
    • Shan, H.1    Banerjee, A.2
  • 21
    • 80052666619 scopus 로고    scopus 로고
    • Collaborative topic modeling for recommending scientific articles
    • C. Wang and D. M. Blei, Collaborative topic modeling for recommending scientific articles, in KDD. ACM, 2011, pp. 448-456
    • (2011) KDD ACM , pp. 448-456
    • Wang, C.1    Blei, D.M.2
  • 22
    • 84880250677 scopus 로고    scopus 로고
    • Kernelized probabilistic matrix factorization: Exploiting graphs and side information
    • T. Zhou, H. Shan, A. Banerjee et al. , Kernelized probabilistic matrix factorization: Exploiting graphs and side information, in SDM, 2012
    • (2012) SDM
    • Zhou, T.1    Shan, H.2    Banerjee, A.3
  • 24
  • 25
    • 84867124870 scopus 로고    scopus 로고
    • Estimating sparse precision matrices from data with missing values
    • M. Kolar and E. P. Xing, Estimating sparse precision matrices from data with missing values, ICML, 2012
    • (2012) ICML
    • Kolar, M.1    Xing, E.P.2
  • 26
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • G. E. Hinton, Training products of experts by minimizing contrastive divergence, Neural computation, vol. 14, no. 8, pp. 1771-1800, 2002
    • (2002) Neural Computation , vol.14 , Issue.8 , pp. 1771-1800
    • Hinton, G.E.1
  • 27
    • 67049165529 scopus 로고    scopus 로고
    • Multiplicative mixture models for overlapping clustering
    • Q. Fu and A. Banerjee, Multiplicative mixture models for overlapping clustering, in ICDM, 2008, pp. 791-796
    • (2008) ICDM , pp. 791-796
    • Fu, Q.1    Banerjee, A.2
  • 28
    • 56449125362 scopus 로고    scopus 로고
    • A nonparametric bayesian approach to modeling overlapping clusters
    • K. Heller and Z. Ghahramani, A nonparametric bayesian approach to modeling overlapping clusters, in AISTAT, 2007
    • (2007) AISTAT
    • Heller, K.1    Ghahramani, Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.