메뉴 건너뛰기




Volumn , Issue , 2010, Pages

Collaborative filtering in a non-uniform world: Learning with the weighted trace norm

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE;

EID: 85161986396     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (189)

References (21)
  • 1
    • 64149107285 scopus 로고    scopus 로고
    • A new approach to collaborative filtering: Operator estimation with spectral regularization
    • J. Abernethy, F. Bach, T. Evgeniou, and J.P. Vert. A new approach to collaborative filtering: Operator estimation with spectral regularization. Journal of Machine Learning Research, 10:803-826, 2009.
    • (2009) Journal of Machine Learning Research , vol.10 , pp. 803-826
    • Abernethy, J.1    Bach, F.2    Evgeniou, T.3    Vert, J.P.4
  • 2
    • 21644465788 scopus 로고    scopus 로고
    • Local minima and convergence in low-rank semidefinite programming
    • S. Burer and R.D.C. Monteiro. Local minima and convergence in low-rank semidefinite programming. Mathematical Programming, 103(3):427-444, 2005.
    • (2005) Mathematical Programming , vol.103 , Issue.3 , pp. 427-444
    • Burer, S.1    Monteiro, R.D.C.2
  • 3
    • 77951291046 scopus 로고    scopus 로고
    • A singular value thresholding algorithm for matrix completion
    • J.F. Cai, E.J. Candès, and Z. Shen. A Singular Value Thresholding Algorithm for Matrix Completion. SIAM Journal on Optimization, 20:1956, 2010.
    • (2010) SIAM Journal on Optimization , vol.20 , pp. 1956
    • Cai, J.F.1    Candès, E.J.2    Shen, Z.3
  • 7
    • 0034853839 scopus 로고    scopus 로고
    • A rank minimization heuristic with application to minimum order system approximation
    • M. Fazel, H. Hindi, and S.P. Boyd. A rank minimization heuristic with application to minimum order system approximation. In Proceedings American Control Conference, volume 6, 2001.
    • (2001) Proceedings American Control Conference , vol.6
    • Fazel, M.1    Hindi, H.2    Boyd, S.P.3
  • 8
    • 65449121157 scopus 로고    scopus 로고
    • Factorization meets the neighborhood: A multifaceted collaborative filtering model
    • Yehuda Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering model. In ACM SIGKDD, pages 426-434, 2008.
    • (2008) ACM SIGKDD , pp. 426-434
    • Koren, Y.1
  • 9
    • 72549110327 scopus 로고    scopus 로고
    • Interior-point method for nuclear norm approximation with application to system identification
    • Z. Liu and L. Vandenberghe. Interior-point method for nuclear norm approximation with application to system identification. SIAM Journal on Matrix Analysis and Applications, 31(3):1235-1256, 2009.
    • (2009) SIAM Journal on Matrix Analysis and Applications , vol.31 , Issue.3 , pp. 1235-1256
    • Liu, Z.1    Vandenberghe, L.2
  • 10
    • 72549092023 scopus 로고    scopus 로고
    • Fixed point and Bregman iterative methods for matrix rank minimization
    • S. Ma, D. Goldfarb, and L. Chen. Fixed point and Bregman iterative methods for matrix rank minimization. Mathematical Programming, pages 1-33, 2009.
    • (2009) Mathematical Programming , pp. 1-33
    • Ma, S.1    Goldfarb, D.2    Chen, L.3
  • 11
    • 77956944781 scopus 로고    scopus 로고
    • Spectral regularization algorithms for learning large incompletematrices
    • R. Mazumder, T. Hastie, and R. Tibshirani. Spectral Regularization Algorithms for Learning Large IncompleteMatrices. Journal of Machine Learning Research, 11:2287-2322, 2010.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 2287-2322
    • Mazumder, R.1    Hastie, T.2    Tibshirani, R.3
  • 14
    • 31844451557 scopus 로고    scopus 로고
    • Fast maximum margin matrix factorization for collaborative prediction
    • J.D.M. Rennie and N. Srebro. Fast maximum margin matrix factorization for collaborative prediction. In ICML, page 719, 2005.
    • (2005) ICML , pp. 719
    • Rennie, J.D.M.1    Srebro, N.2
  • 18
    • 84860615405 scopus 로고    scopus 로고
    • Rank, trace-norm and max-norm
    • N. Srebro and A. Shraibman. Rank, trace-norm and max-norm. In COLT, 2005.
    • (2005) COLT
    • Srebro, N.1    Shraibman, A.2
  • 19
    • 64149121935 scopus 로고    scopus 로고
    • Scalable collaborative filtering approaches for large recommender systems
    • Gábor Takács, István Pilászy, Bottyán Németh, and Domonkos Tikk. Scalable collaborative filtering approaches for large recommender systems. Journal of Machine Learning Research, 10:623-656, 2009.
    • (2009) Journal of Machine Learning Research , vol.10 , pp. 623-656
    • Takács, G.1    Pilászy, I.2    Németh, B.3    Tikk, D.4
  • 20
    • 77956529188 scopus 로고    scopus 로고
    • A fast augmented lagrangian algorithm for learning low-rank matrices
    • R. Tomioka, T. Suzuki,M. Sugiyama, and H. Kashima. A fast augmented lagrangian algorithm for learning low-rank matrices. In ICML, pages 1087-1094, 2010.
    • (2010) ICML , pp. 1087-1094
    • Tomioka, R.1    Suzuki, T.2    Sugiyama, M.3    Kashima, H.4
  • 21
    • 48349094364 scopus 로고    scopus 로고
    • Improving maximum margin matrix factorization
    • M.Weimer, A. Karatzoglou, and A. Smola. Improving maximum margin matrix factorization. Machine Learning, 72(3):263-276, 2008.
    • (2008) Machine Learning , vol.72 , Issue.3 , pp. 263-276
    • Weimer, M.1    Karatzoglou, A.2    Smola, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.