-
1
-
-
64149107285
-
A new approach to collaborative filtering: Operator estimation with spectral regularization
-
J. Abernethy, F. Bach, T. Evgeniou, and J.P. Vert. A new approach to collaborative filtering: Operator estimation with spectral regularization. Journal of Machine Learning Research, 10:803-826, 2009.
-
(2009)
Journal of Machine Learning Research
, vol.10
, pp. 803-826
-
-
Abernethy, J.1
Bach, F.2
Evgeniou, T.3
Vert, J.P.4
-
2
-
-
21644465788
-
Local minima and convergence in low-rank semidefinite programming
-
S. Burer and R.D.C. Monteiro. Local minima and convergence in low-rank semidefinite programming. Mathematical Programming, 103(3):427-444, 2005.
-
(2005)
Mathematical Programming
, vol.103
, Issue.3
, pp. 427-444
-
-
Burer, S.1
Monteiro, R.D.C.2
-
3
-
-
77951291046
-
A singular value thresholding algorithm for matrix completion
-
J.F. Cai, E.J. Candès, and Z. Shen. A Singular Value Thresholding Algorithm for Matrix Completion. SIAM Journal on Optimization, 20:1956, 2010.
-
(2010)
SIAM Journal on Optimization
, vol.20
, pp. 1956
-
-
Cai, J.F.1
Candès, E.J.2
Shen, Z.3
-
7
-
-
0034853839
-
A rank minimization heuristic with application to minimum order system approximation
-
M. Fazel, H. Hindi, and S.P. Boyd. A rank minimization heuristic with application to minimum order system approximation. In Proceedings American Control Conference, volume 6, 2001.
-
(2001)
Proceedings American Control Conference
, vol.6
-
-
Fazel, M.1
Hindi, H.2
Boyd, S.P.3
-
8
-
-
65449121157
-
Factorization meets the neighborhood: A multifaceted collaborative filtering model
-
Yehuda Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering model. In ACM SIGKDD, pages 426-434, 2008.
-
(2008)
ACM SIGKDD
, pp. 426-434
-
-
Koren, Y.1
-
9
-
-
72549110327
-
Interior-point method for nuclear norm approximation with application to system identification
-
Z. Liu and L. Vandenberghe. Interior-point method for nuclear norm approximation with application to system identification. SIAM Journal on Matrix Analysis and Applications, 31(3):1235-1256, 2009.
-
(2009)
SIAM Journal on Matrix Analysis and Applications
, vol.31
, Issue.3
, pp. 1235-1256
-
-
Liu, Z.1
Vandenberghe, L.2
-
10
-
-
72549092023
-
Fixed point and Bregman iterative methods for matrix rank minimization
-
S. Ma, D. Goldfarb, and L. Chen. Fixed point and Bregman iterative methods for matrix rank minimization. Mathematical Programming, pages 1-33, 2009.
-
(2009)
Mathematical Programming
, pp. 1-33
-
-
Ma, S.1
Goldfarb, D.2
Chen, L.3
-
14
-
-
31844451557
-
Fast maximum margin matrix factorization for collaborative prediction
-
J.D.M. Rennie and N. Srebro. Fast maximum margin matrix factorization for collaborative prediction. In ICML, page 719, 2005.
-
(2005)
ICML
, pp. 719
-
-
Rennie, J.D.M.1
Srebro, N.2
-
18
-
-
84860615405
-
Rank, trace-norm and max-norm
-
N. Srebro and A. Shraibman. Rank, trace-norm and max-norm. In COLT, 2005.
-
(2005)
COLT
-
-
Srebro, N.1
Shraibman, A.2
-
19
-
-
64149121935
-
Scalable collaborative filtering approaches for large recommender systems
-
Gábor Takács, István Pilászy, Bottyán Németh, and Domonkos Tikk. Scalable collaborative filtering approaches for large recommender systems. Journal of Machine Learning Research, 10:623-656, 2009.
-
(2009)
Journal of Machine Learning Research
, vol.10
, pp. 623-656
-
-
Takács, G.1
Pilászy, I.2
Németh, B.3
Tikk, D.4
-
20
-
-
77956529188
-
A fast augmented lagrangian algorithm for learning low-rank matrices
-
R. Tomioka, T. Suzuki,M. Sugiyama, and H. Kashima. A fast augmented lagrangian algorithm for learning low-rank matrices. In ICML, pages 1087-1094, 2010.
-
(2010)
ICML
, pp. 1087-1094
-
-
Tomioka, R.1
Suzuki, T.2
Sugiyama, M.3
Kashima, H.4
-
21
-
-
48349094364
-
Improving maximum margin matrix factorization
-
M.Weimer, A. Karatzoglou, and A. Smola. Improving maximum margin matrix factorization. Machine Learning, 72(3):263-276, 2008.
-
(2008)
Machine Learning
, vol.72
, Issue.3
, pp. 263-276
-
-
Weimer, M.1
Karatzoglou, A.2
Smola, A.3
|