메뉴 건너뛰기




Volumn 10, Issue 5, 2015, Pages

A context-aware delayed agglomeration framework for electron microscopy segmentation

Author keywords

[No Author keywords available]

Indexed keywords

ELECTRON MICROSCOPY; NERVE CELL; PREDICTION; ALGORITHM;

EID: 84946599449     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0125825     Document Type: Article
Times cited : (28)

References (26)
  • 1
    • 84881453258 scopus 로고    scopus 로고
    • Connectomics reconstruction of the inner plexiform layer in the mouse retina
    • PMID: 23925239
    • Helmstaedter M., Briggman K., Turaga S., Jain V., Seung S., Denk W.: Connectomics reconstruction of the inner plexiform layer in the mouse retina. Nature 500 (7461) (2013) 168-174 doi: 10.1038/ nature12346 PMID: 23925239
    • (2013) Nature , vol.500 , Issue.7461 , pp. 168-174
    • Helmstaedter, M.1    Briggman, K.2    Turaga, S.3    Jain, V.4    Seung, S.5    Denk, W.6
  • 2
    • 84881412920 scopus 로고    scopus 로고
    • A visual motion detection circuit suggested by Drosophila connectomics
    • PMID: 23925240
    • Takemura S. Y., Bharioke A., Lu Z., Nern A., Vitaladevuni S., Rivlin P. K., et al.: A visual motion detection circuit suggested by Drosophila connectomics. Nature 500 (7461) (2013) 175-181 doi: 10.1038/ nature12450 PMID: 23925240
    • (2013) Nature , vol.500 , Issue.7461 , pp. 175-181
    • Takemura, S.Y.1    Bharioke, A.2    Lu, Z.3    Nern, A.4    Vitaladevuni, S.5    Rivlin, P.K.6
  • 3
    • 79953048649 scopus 로고    scopus 로고
    • Contour detection and hierarchical image segmentation
    • IEEE Transactions on
    • Arbelaez P., Maire M., Fowlkes C., Malik J.: Contour detection and hierarchical image segmentation. PAMI, IEEE Transactions on 33(5) (2011) 898-916 doi: 10.1109/TPAMI.2010.161
    • (2011) PAMI , vol.33 , Issue.5 , pp. 898-916
    • Arbelaez, P.1    Maire, M.2    Fowlkes, C.3    Malik, J.4
  • 4
    • 85162351107 scopus 로고    scopus 로고
    • Efficient inference in fully connected crfs with Gaussian edge potentials
    • Krahenbuhl, P., Koltun, V.: Efficient inference in fully connected crfs with gaussian edge potentials. In: NIPS. (2011)
    • (2011) NIPS
    • Krahenbuhl, P.1    Koltun, V.2
  • 5
    • 77953225585 scopus 로고    scopus 로고
    • Associative hierarchical crfs for object class image segmentation
    • Ladicky, L., Russell, C., Kohli, P., Torr, P.H.S.: Associative hierarchical crfs for object class image segmentation. In: ICCV. (2009)
    • (2009) ICCV
    • Ladicky, L.1    Russell, C.2    Kohli, P.3    Torr, P.H.S.4
  • 6
    • 54249156699 scopus 로고    scopus 로고
    • Segmentation of SBFSEM Volume Data of Neural Tissue by Hierarchical Classification
    • Andres B., Köthe U., Helmstaedter M., Denk W., Hamprecht F.: Segmentation of SBFSEM Volume Data of Neural Tissue by Hierarchical Classification. Pattern Recognition 5096(15) (2008) 142-152 doi: 10.1007/978-3-540-69321-5-15
    • (2008) Pattern Recognition , vol.5096 , Issue.15 , pp. 142-152
    • Andres, B.1    Köthe, U.2    Helmstaedter, M.3    Denk, W.4    Hamprecht, F.5
  • 8
    • 77957017889 scopus 로고    scopus 로고
    • Semi-automated reconstruction of neural circuits using electron microscopy
    • PMID: 20833533
    • Chklovskii D.B., Vitaladevuni S., Scheffer L.K.: Semi-automated reconstruction of neural circuits using electron microscopy. Current Opinion in Neurobiology 20(5) (2010) 667-675 doi: 10.1016/j.conb.2010. 08.002 PMID: 20833533
    • (2010) Current Opinion in Neurobiology , vol.20 , Issue.5 , pp. 667-675
    • Chklovskii, D.B.1    Vitaladevuni, S.2    Scheffer, L.K.3
  • 9
    • 84866713677 scopus 로고    scopus 로고
    • Efficient automatic 3d-reconstruction of branching neurons from em data
    • Funke, J., Andres, B., Hamprecht, F., Cardona, A., Cook, M.: Efficient automatic 3d-reconstruction of branching neurons from em data. In: CVPR. (2012)
    • (2012) CVPR
    • Funke, J.1    Andres, B.2    Hamprecht, F.3    Cardona, A.4    Cook, M.5
  • 12
    • 0000442474 scopus 로고
    • The morphological approach to segmentation: The watershed transformation
    • Beucher, S., Meyer, F.: The Morphological Approach to Segmentation: The Watershed Transformation. Mathematical Morphology in Image Processing (1993) 433-481
    • (1993) Mathematical Morphology in Image Processing , pp. 433-481
    • Beucher, S.1    Meyer, F.2
  • 13
    • 84874557333 scopus 로고    scopus 로고
    • Watershed merge tree classification for electron microscopy image segmentation
    • Liu, T., Jurrus, E., Seyedhosseini, M., Ellisman, M., Tasdizen, T.: Watershed merge tree classification for electron microscopy image segmentation. In: ICPR. (2012)
    • (2012) ICPR
    • Liu, T.1    Jurrus, E.2    Seyedhosseini, M.3    Ellisman, M.4    Tasdizen, T.5
  • 14
    • 84906987290 scopus 로고    scopus 로고
    • Optree: A learning-based adaptive watershed algorithm for neuron segmentation
    • Uzunbas, M., Chen, C., Metaxsas. D.: Optree: A Learning-Based Adaptive Watershed Algorithm for Neuron Segmentation. In: MICCAI. (2014)
    • (2014) MICCAI
    • Uzunbas, M.1    Chen, C.2    Metaxsas, D.3
  • 15
    • 84882631243 scopus 로고    scopus 로고
    • Machine learning of hierarchical clustering to segment 2d and 3d images
    • PMID: 23977123
    • Nunez-Iglesias J., Kennedy R., Parag T., Shi J., Chklovskii D.B.: Machine learning of hierarchical clustering to segment 2d and 3d images. PLoS ONE 8(8) (2013). doi: 10.1371/journal.pone.0071715 PMID: 23977123
    • (2013) PLoS ONE , vol.8 , Issue.8
    • Nunez-Iglesias, J.1    Kennedy, R.2    Parag, T.3    Shi, J.4    Chklovskii, D.B.5
  • 16
    • 84877789057 scopus 로고    scopus 로고
    • Deep neural networks segment neuronal membranes in electron microscopy images
    • Ciresan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Deep neural networks segment neuronal membranes in electron microscopy images. In: NIPS. (2012)
    • (2012) NIPS
    • Ciresan, D.C.1    Giusti, A.2    Gambardella, L.M.3    Schmidhuber, J.4
  • 18
    • 77954660421 scopus 로고    scopus 로고
    • Detection of neuron membranes in electron microscopy images using a serial neural network architecture
    • PMID: 20598935
    • Jurrus E., Paiva A., Watanabe S., Anderson J., Jones B., Whitaker R., et al: Detection of neuron membranes in electron microscopy images using a serial neural network architecture. Medical Image Analysis 14(6) (2010) 770-783 doi: 10.1016/j.media.2010.06.002 PMID: 20598935
    • (2010) Medical Image Analysis , vol.14 , Issue.6 , pp. 770-783
    • Jurrus, E.1    Paiva, A.2    Watanabe, S.3    Anderson, J.4    Jones, B.5    Whitaker, R.6
  • 19
    • 84894319526 scopus 로고    scopus 로고
    • A modular hierarchical approach to 3D electron microscopy image segmentation
    • PMID: 24491638
    • Liu T., Jones C., Seyedhosseini M., Tasdizen T.: A modular hierarchical approach to 3D electron microscopy image segmentation. Journal of Neuroscience Methods 226(15) (2014) 88-102. doi: 10. 1016/j.jneumeth.2014.01.022 PMID: 24491638
    • (2014) Journal of Neuroscience Methods , vol.226 , Issue.15 , pp. 88-102
    • Liu, T.1    Jones, C.2    Seyedhosseini, M.3    Tasdizen, T.4
  • 20
    • 84909599328 scopus 로고    scopus 로고
    • Small smaple learning of superpixel classifiers for EM segmentation
    • Parag, T., Plaza, S., Sche er, L.: Small smaple learning of superpixel classifiers for EM segmentation. In: MICCAI. (2014)
    • (2014) MICCAI
    • Parag, T.1    Plaza, S.2    Scheer, L.3
  • 21
    • 84880815899 scopus 로고    scopus 로고
    • Cellular-resolution connectomics: Challenges of dense neural circuit reconstruction
    • PMID: 23722209
    • Helmstaedter M.: Cellular-resolution connectomics: challenges of dense neural circuit reconstruction. Nat Methods 10(6) (2013) 501-7 doi: 10.1038/nmeth.2476 PMID: 23722209
    • (2013) Nat Methods , vol.10 , Issue.6 , pp. 501-507
    • Helmstaedter, M.1
  • 22
    • 84856735789 scopus 로고    scopus 로고
    • Supervoxel-based segmentation of mitochondria in em image stacks with learned shape features
    • Lucchi A., Smith K., Achanta R., Knott G., Fua P.: Supervoxel-based segmentation of mitochondria in em image stacks with learned shape features. Medical Imaging, IEEE Transactions on 31(2) (2012) 474-486 doi: 10.1109/TMI.2011.2171705
    • (2012) Medical Imaging, IEEE Transactions On , vol.31 , Issue.2 , pp. 474-486
    • Lucchi, A.1    Smith, K.2    Achanta, R.3    Knott, G.4    Fua, P.5
  • 23
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • October
    • Breiman L.: Random forests. Machine Learning 45(1) (October 2001) 5-32 doi: 10.1023/ A:1010933404324
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 24
    • 79961198540 scopus 로고    scopus 로고
    • Ilastik: Interactive learning and segmentation toolkit
    • Sommer, C., Straehle, C., Koethe, U., Hamprecht, F.A.: "ilastik: Interactive learning and segmentation toolkit". In: ISBI. (2011)
    • (2011) ISBI
    • Sommer, C.1    Straehle, C.2    Koethe, U.3    Hamprecht, F.A.4
  • 25
    • 9444274777 scopus 로고    scopus 로고
    • Comparing clusterings by the variation of information
    • Meila, M.: Comparing clusterings by the variation of information. In: COLT'03. (2003) 173-187
    • (2003) COLT'03 , pp. 173-187
    • Meila, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.