메뉴 건너뛰기




Volumn 8673 LNCS, Issue PART 1, 2014, Pages 389-397

Small sample learning of superpixel classifiers for EM segmentation

Author keywords

[No Author keywords available]

Indexed keywords

IMAGE SEGMENTATION; ALGORITHMS; MEDICAL COMPUTING; MEDICAL IMAGING;

EID: 84909599328     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-319-10404-1_49     Document Type: Conference Paper
Times cited : (18)

References (24)
  • 1
    • 84881412920 scopus 로고    scopus 로고
    • A visual motion detection circuit suggested by Drosophila connectomics
    • Takemura, S.Y., et al.: A visual motion detection circuit suggested by Drosophila connectomics. Nature 500(7461), 175-181 (2013)
    • (2013) Nature , vol.500 , Issue.7461 , pp. 175-181
    • Takemura, S.Y.1
  • 3
    • 84866713677 scopus 로고    scopus 로고
    • Efficient automatic 3Dreconstruction of branching neurons from EM data
    • Funke, J., Andres, B., Hamprecht, F., Cardona, A., Cook, M.: Efficient automatic 3Dreconstruction of branching neurons from EM data. In: CVPR (2012)
    • (2012) CVPR
    • Funke, J.1    Andres, B.2    Hamprecht, F.3    Cardona, A.4    Cook, M.5
  • 4
    • 77955991044 scopus 로고    scopus 로고
    • Neuron geometry extraction by perceptual grouping in sstem images
    • Kaynig, V., Fuchs, T., Buhmann, J.: Neuron geometry extraction by perceptual grouping in sstem images. In: CVPR (2010)
    • (2010) CVPR
    • Kaynig, V.1    Fuchs, T.2    Buhmann, J.3
  • 5
    • 77955992085 scopus 로고    scopus 로고
    • Co-clustering of image segments using convex optimization applied to em neuronal reconstruction
    • Vitaladevuni, S., Basri, R.: Co-clustering of image segments using convex optimization applied to em neuronal reconstruction. In: CVPR (2010)
    • (2010) CVPR
    • Vitaladevuni, S.1    Basri, R.2
  • 6
    • 77957017889 scopus 로고    scopus 로고
    • Semi-automated reconstruction of neural circuits using electron microscopy
    • Chklovskii, D.B., Vitaladevuni, S., Scheffer, L.K.: Semi-automated reconstruction of neural circuits using electron microscopy. Current Opinion in Neurobiology 20(5), 667-675 (2010)
    • (2010) Current Opinion in Neurobiology , vol.20 , Issue.5 , pp. 667-675
    • Chklovskii, D.B.1    Vitaladevuni, S.2    Scheffer, L.K.3
  • 8
    • 54249156699 scopus 로고    scopus 로고
    • Segmentation of SBFSEM Volume Data of Neural Tissue by Hierarchical Classification
    • Andres, B., Köthe, U., Helmstaedter, M., Denk, W., Hamprecht, F.: Segmentation of SBFSEM Volume Data of Neural Tissue by Hierarchical Classification. Pattern Recognition 5096(15), 142-152 (2008)
    • (2008) Pattern Recognition , vol.5096 , Issue.15 , pp. 142-152
    • Andres, B.1    Köthe, U.2    Helmstaedter, M.3    Denk, W.4    Hamprecht, F.5
  • 9
    • 84867869479 scopus 로고    scopus 로고
    • Globally optimal closed-surface segmentation for connectomics
    • Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. Springer, Heidelberg
    • Andres, B., Kroeger, T., Briggman, K.L., Denk, W., Korogod, N., Knott, G., Koethe, U., Hamprecht, F.A.: Globally optimal closed-surface segmentation for connectomics. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 778-791. Springer, Heidelberg (2012)
    • (2012) LNCS , vol.7574 , pp. 778-791
    • Andres, B.1    Kroeger, T.2    Briggman, K.L.3    Denk, W.4    Korogod, N.5    Knott, G.6    Koethe, U.7    Hamprecht, F.A.8
  • 11
    • 0000442474 scopus 로고
    • The Morphological Approach to Segmentation: The Watershed Transformation
    • Beucher, S., Meyer, F.: The Morphological Approach to Segmentation: The Watershed Transformation. In: Mathematical Morphology in Image Processing, pp. 433-481 (1993)
    • (1993) Mathematical Morphology in Image Processing , pp. 433-481
    • Beucher, S.1    Meyer, F.2
  • 12
    • 84882631243 scopus 로고    scopus 로고
    • Machine learning of hierarchical clustering to segment 2D and 3D images
    • August
    • Nunez-Iglesias, J., Kennedy, R., Parag, T., Shi, J., Chklovskii, D.B.: Machine learning of hierarchical clustering to segment 2D and 3D images. PLoS ONE 8(8) (August 2013)
    • (2013) PLoS ONE , vol.8 , Issue.8
    • Nunez-Iglesias, J.1    Kennedy, R.2    Parag, T.3    Shi, J.4    Chklovskii, D.B.5
  • 13
    • 84880815899 scopus 로고    scopus 로고
    • Cellular-resolution connectomics: Challenges of dense neural circuit reconstruction
    • Helmstaedter, M.: Cellular-resolution connectomics: challenges of dense neural circuit reconstruction. Nat. Methods 10(6), 501-507 (2013)
    • (2013) Nat. Methods , vol.10 , Issue.6 , pp. 501-507
    • Helmstaedter, M.1
  • 14
  • 18
    • 3242788638 scopus 로고    scopus 로고
    • Active + semi-supervised learning = robust multiview learning
    • Muslea, I., Minton, S., Knoblock, C.A.: Active + semi-supervised learning = robust multiview learning. In: ICML (2002)
    • (2002) ICML
    • Muslea, I.1    Minton, S.2    Knoblock, C.A.3
  • 20
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L.: Random forests. Machine Learning 45(1), 5-32 (2001)
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.