메뉴 건너뛰기




Volumn 10, Issue 3, 2015, Pages 119-125

A Model to Predict Low Academic Performance at a Specific Enrollment Using Data Mining

Author keywords

Attrition; dropout; Educational Data Mining; prediction

Indexed keywords

CLASSIFICATION (OF INFORMATION); DECISION TREES; EDUCATION; FORECASTING; TREES (MATHEMATICS);

EID: 84946555071     PISSN: None     EISSN: 19328540     Source Type: Journal    
DOI: 10.1109/RITA.2015.2452632     Document Type: Article
Times cited : (76)

References (28)
  • 3
    • 84864685081 scopus 로고    scopus 로고
    • Learning analytics and educational data mining: Towards communication and collaboration
    • New York, NY, USA
    • G. Siemens and R. S. J. D. Baker, "Learning analytics and educational data mining: Towards communication and collaboration," in Proc. 2nd Int. Conf. Learn. Anal. Knowl., New York, NY, USA, 2012, pp. 252-254.
    • (2012) Proc. 2nd Int. Conf. Learn. Anal. Knowl. , pp. 252-254
    • Siemens, G.1    Baker, R.S.J.D.2
  • 7
    • 84892637170 scopus 로고    scopus 로고
    • Use data warehouse and data mining to predict student academic performance in schools: A case study (perspective application and benefits)
    • Aug
    • Y. Kurniawan and E. Halim, "Use data warehouse and data mining to predict student academic performance in schools: A case study (perspective application and benefits)," in Proc. IEEE Int. Conf. Teach., Assessment Learn. Eng. (TALE), Aug. 2013, pp. 98-103.
    • (2013) Proc. IEEE Int. Conf. Teach., Assessment Learn. Eng. (TALE) , pp. 98-103
    • Kurniawan, Y.1    Halim, E.2
  • 8
    • 84946551680 scopus 로고    scopus 로고
    • Academic analytics: Mapeando o genoma da Universidade
    • Sep
    • S. A. Ferreira and A. Andrade, "Academic analytics: Mapeando o genoma da Universidade," IEEE VAEP-RITA, vol. 1, no. 3, pp. 167-174, Sep. 2013.
    • (2013) IEEE VAEP-RITA , vol.1 , Issue.3 , pp. 167-174
    • Ferreira, S.A.1    Andrade, A.2
  • 9
    • 84946596768 scopus 로고    scopus 로고
    • Student learning outcomes assessment and curriculum continuous improvement processes
    • Tegucigalpa, Honduras
    • R. Hossein and S. Naveen, "Student learning outcomes assessment and curriculum continuous improvement processes," in Proc. 6th Latin Amer. Caribbean Conf. Eng. Technol., Tegucigalpa, Honduras, 2008.
    • (2008) Proc. 6th Latin Amer. Caribbean Conf. Eng. Technol.
    • Hossein, R.1    Naveen, S.2
  • 10
    • 84946573501 scopus 로고    scopus 로고
    • [Online] accessed Jan. 3, 2015
    • Educational Data Mining Society. [Online]. Available: http://www. educationaldatamining.org/, accessed Jan. 3, 2015.
    • Educational Data Mining Society
  • 11
    • 77954605151 scopus 로고    scopus 로고
    • The state of educational data mining in 2009: A review and future visions
    • R. S. J. D. Baker and K. Yacef, "The state of educational data mining in 2009: A review and future visions," J. Edu. Data Mining, vol. 1, no. 1, pp. 3-17, 2009.
    • (2009) J. Edu. Data Mining , vol.1 , Issue.1 , pp. 3-17
    • Baker, R.S.J.D.1    Yacef, K.2
  • 12
    • 77958153220 scopus 로고    scopus 로고
    • Educational data mining: A review of the state of the art
    • Nov
    • C. Romero and S. Ventura, "Educational data mining: A review of the state of the art," IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 40, no. 6, pp. 601-618, Nov. 2010.
    • (2010) IEEE Trans. Syst., Man, Cybern. C, Appl. Rev. , vol.40 , Issue.6 , pp. 601-618
    • Romero, C.1    Ventura, S.2
  • 14
    • 79960230431 scopus 로고    scopus 로고
    • Modeling student retention in science and engineering disciplines using neural networks
    • Apr
    • R. Alkhasawneh and R. Hobson, "Modeling student retention in science and engineering disciplines using neural networks," in Proc. IEEE Global Eng. Edu. Conf. (EDUCON), Apr. 2011, pp. 660-663.
    • (2011) Proc. IEEE Global Eng. Edu. Conf. (EDUCON) , pp. 660-663
    • Alkhasawneh, R.1    Hobson, R.2
  • 17
    • 84873632887 scopus 로고    scopus 로고
    • Student variables that predict retention: Recent research and new developments
    • R. D. Reason, "Student variables that predict retention: Recent research and new developments," J. Student Affairs Res. Pract., vol. 46, no. 3, pp. 850-869, 2009.
    • (2009) J. Student Affairs Res. Pract. , vol.46 , Issue.3 , pp. 850-869
    • Reason, R.D.1
  • 19
    • 61849186005 scopus 로고    scopus 로고
    • Determination of factors influencing the achievement of the first-year university students using data mining methods
    • Boston, MA, USA
    • J. F. Superby, J. P. Vandamme, and N. Meskens, "Determination of factors influencing the achievement of the first-year university students using data mining methods," in Proc. Workshop Edu. Data Mining, Boston, MA, USA, 2006, pp. 37-44.
    • (2006) Proc. Workshop Edu. Data Mining , pp. 37-44
    • Superby, J.F.1    Vandamme, J.P.2    Meskens, N.3
  • 23
    • 84857478947 scopus 로고    scopus 로고
    • Educational data mining: A case study for predicting dropout-prone students
    • Jan
    • S. Kotsiantis, "Educational data mining: A case study for predicting dropout-prone students," Int. J. Knowl. Eng. Soft Data Paradigms, vol. 1, no. 2, pp. 101-111, Jan. 2009.
    • (2009) Int. J. Knowl. Eng. Soft Data Paradigms , vol.1 , Issue.2 , pp. 101-111
    • Kotsiantis, S.1
  • 28
    • 0002106691 scopus 로고    scopus 로고
    • MetaCost: A general method for making classifiers costsensitive
    • P. Domingos, "MetaCost: A general method for making classifiers costsensitive," in Proc. 5th Int. Conf. Knowl. Discovery Data Mining, 1999, pp. 155-164.
    • (1999) Proc. 5th Int. Conf. Knowl. Discovery Data Mining , pp. 155-164
    • Domingos, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.