-
2
-
-
84868201479
-
-
Knowledge Media Inst., The Open Univ., Buckinghamshire, U.K., Tech. Rep. KMI- 12-01
-
R. Ferguson, "The state of learning analytics in 2012: A review and future challenges," Knowledge Media Inst., The Open Univ., Buckinghamshire, U.K., Tech. Rep. KMI-12-01, 2012.
-
(2012)
The State of Learning Analytics in 2012: A Review and Future Challenges
-
-
Ferguson, R.1
-
3
-
-
84864685081
-
Learning analytics and educational data mining: Towards communication and collaboration
-
New York, NY, USA
-
G. Siemens and R. S. J. D. Baker, "Learning analytics and educational data mining: Towards communication and collaboration," in Proc. 2nd Int. Conf. Learn. Anal. Knowl., New York, NY, USA, 2012, pp. 252-254.
-
(2012)
Proc. 2nd Int. Conf. Learn. Anal. Knowl.
, pp. 252-254
-
-
Siemens, G.1
Baker, R.S.J.D.2
-
4
-
-
79954591122
-
Modelo Bayesiano del Alumno basado en el Estilo de Aprendizaje y las Preferencias"
-
May
-
C. C. Márquez, G. C. Jordán, and E. M. Valldeperas, "Modelo Bayesiano del Alumno basado en el Estilo de Aprendizaje y las Preferencias," IEEE Revista Iberoamericana de Tecnologías del Aprendizaje, vol. 4, no. 2, pp. 139-146, May 2009.
-
(2009)
IEEE Revista Iberoamericana de Tecnologías Del Aprendizaje
, vol.4
, Issue.2
, pp. 139-146
-
-
Márquez, C.C.1
Jordán, G.C.2
Valldeperas, E.M.3
-
5
-
-
84880976781
-
Learning analytics UC3M
-
Mar
-
C. D. Kloos, A. Pardo, P. J. Munoz-Merino, I. Gutierrez, and D. Leony, "Learning analytics UC3M," in Proc. IEEE Global Eng. Edu. Conf. (EDUCON), Mar. 2013, pp. 1232-1238.
-
(2013)
Proc IEEE Global Eng. Edu. Conf. (EDUCON)
, pp. 1232-1238
-
-
Kloos, C.D.1
Pardo, A.2
Munoz-Merino, P.J.3
Gutierrez, I.4
Leony, D.5
-
6
-
-
84946544728
-
Student behavior patterns in a virtual learning environment
-
Cancun, Mexico
-
P. Valdiviezo, R. Reátegui, and M. Sarango, "Student behavior patterns in a virtual learning environment," in Proc. 11th Latin Amer. Caribbean Conf. Eng. Technol., Cancun, Mexico, 2013, pp. 1-8.
-
(2013)
Proc. 11th Latin Amer. Caribbean Conf. Eng. Technol.
, pp. 1-8
-
-
Valdiviezo, P.1
Reátegui, R.2
Sarango, M.3
-
7
-
-
84892637170
-
Use data warehouse and data mining to predict student academic performance in schools: A case study (perspective application and benefits)
-
Aug
-
Y. Kurniawan and E. Halim, "Use data warehouse and data mining to predict student academic performance in schools: A case study (perspective application and benefits)," in Proc. IEEE Int. Conf. Teach., Assessment Learn. Eng. (TALE), Aug. 2013, pp. 98-103.
-
(2013)
Proc. IEEE Int. Conf. Teach., Assessment Learn. Eng. (TALE)
, pp. 98-103
-
-
Kurniawan, Y.1
Halim, E.2
-
8
-
-
84946551680
-
Academic analytics: Mapeando o genoma da Universidade
-
Sep
-
S. A. Ferreira and A. Andrade, "Academic analytics: Mapeando o genoma da Universidade," IEEE VAEP-RITA, vol. 1, no. 3, pp. 167-174, Sep. 2013.
-
(2013)
IEEE VAEP-RITA
, vol.1
, Issue.3
, pp. 167-174
-
-
Ferreira, S.A.1
Andrade, A.2
-
9
-
-
84946596768
-
Student learning outcomes assessment and curriculum continuous improvement processes
-
Tegucigalpa, Honduras
-
R. Hossein and S. Naveen, "Student learning outcomes assessment and curriculum continuous improvement processes," in Proc. 6th Latin Amer. Caribbean Conf. Eng. Technol., Tegucigalpa, Honduras, 2008.
-
(2008)
Proc. 6th Latin Amer. Caribbean Conf. Eng. Technol.
-
-
Hossein, R.1
Naveen, S.2
-
10
-
-
84946573501
-
-
[Online] accessed Jan. 3, 2015
-
Educational Data Mining Society. [Online]. Available: http://www. educationaldatamining.org/, accessed Jan. 3, 2015.
-
Educational Data Mining Society
-
-
-
11
-
-
77954605151
-
The state of educational data mining in 2009: A review and future visions
-
R. S. J. D. Baker and K. Yacef, "The state of educational data mining in 2009: A review and future visions," J. Edu. Data Mining, vol. 1, no. 1, pp. 3-17, 2009.
-
(2009)
J. Edu. Data Mining
, vol.1
, Issue.1
, pp. 3-17
-
-
Baker, R.S.J.D.1
Yacef, K.2
-
12
-
-
77958153220
-
Educational data mining: A review of the state of the art
-
Nov
-
C. Romero and S. Ventura, "Educational data mining: A review of the state of the art," IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 40, no. 6, pp. 601-618, Nov. 2010.
-
(2010)
IEEE Trans. Syst., Man, Cybern. C, Appl. Rev.
, vol.40
, Issue.6
, pp. 601-618
-
-
Romero, C.1
Ventura, S.2
-
13
-
-
84946596769
-
Data mining model to predict academic performance at the Universidad Nacional de Colombia
-
Guayaquil, Ecuador
-
C. E. L. Guarín, E. L. Guzmán, and F. A. González, "Data mining model to predict academic performance at the Universidad Nacional de Colombia," in Proc. 12th Latin Amer. Caribbean Conf. Eng. Technol., Guayaquil, Ecuador, 2014.
-
(2014)
Proc. 12th Latin Amer. Caribbean Conf. Eng. Technol.
-
-
Guarín, C.E.L.1
Guzmán, E.L.2
González, F.A.3
-
14
-
-
79960230431
-
Modeling student retention in science and engineering disciplines using neural networks
-
Apr
-
R. Alkhasawneh and R. Hobson, "Modeling student retention in science and engineering disciplines using neural networks," in Proc. IEEE Global Eng. Edu. Conf. (EDUCON), Apr. 2011, pp. 660-663.
-
(2011)
Proc. IEEE Global Eng. Edu. Conf. (EDUCON)
, pp. 660-663
-
-
Alkhasawneh, R.1
Hobson, R.2
-
16
-
-
25144439604
-
-
Boston, MA, USA, Addison-Wesley
-
P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining. Boston, MA, USA: Addison-Wesley, 2005.
-
(2005)
Introduction to Data Mining
-
-
Tan, P.-N.1
Steinbach, M.2
Kumar, V.3
-
17
-
-
84873632887
-
Student variables that predict retention: Recent research and new developments
-
R. D. Reason, "Student variables that predict retention: Recent research and new developments," J. Student Affairs Res. Pract., vol. 46, no. 3, pp. 850-869, 2009.
-
(2009)
J. Student Affairs Res. Pract.
, vol.46
, Issue.3
, pp. 850-869
-
-
Reason, R.D.1
-
18
-
-
8344235939
-
Preventing student dropout in distance learning using machine learning techniques
-
Oxford, U.K.
-
S. Kotsiantis, C. J. Pierrakeas, and P. E. Pintelas, "Preventing student dropout in distance learning using machine learning techniques," in Proc. Int. Conf. Knowl.-Based Intell. Inf. Eng. Syst., Oxford, U.K., 2003, pp. 267-274.
-
(2003)
Proc. Int. Conf. Knowl.-Based Intell. Inf. Eng. Syst.
, pp. 267-274
-
-
Kotsiantis, S.1
Pierrakeas, C.J.2
Pintelas, P.E.3
-
19
-
-
61849186005
-
Determination of factors influencing the achievement of the first-year university students using data mining methods
-
Boston, MA, USA
-
J. F. Superby, J. P. Vandamme, and N. Meskens, "Determination of factors influencing the achievement of the first-year university students using data mining methods," in Proc. Workshop Edu. Data Mining, Boston, MA, USA, 2006, pp. 37-44.
-
(2006)
Proc. Workshop Edu. Data Mining
, pp. 37-44
-
-
Superby, J.F.1
Vandamme, J.P.2
Meskens, N.3
-
20
-
-
68749111497
-
-
Ph.D. dissertation, Faculty Med., Univ. Catholique Louvain, Leuven, Belgium
-
P. Parmentier, "La ŕéussite des études universitaires: Facteurs structurels es processuels de la performance académique en première année en médicine," Ph.D. dissertation, Faculty Med., Univ. Catholique Louvain, Leuven, Belgium, 1994.
-
(1994)
La Réussite des Études Universitaires: Facteurs Structurels Es Processuels de la Performance Académique en Première Année en Médicine
-
-
Parmentier, P.1
-
21
-
-
84864139307
-
Prediction of success in engineering study
-
Apr
-
D. A. Carnegie, C. Watterson, P. Andreae, and W. N. Browne, "Prediction of success in engineering study," in Proc. IEEE Global Eng. Edu. Conf. (EDUCON), Apr. 2012, pp. 1-9.
-
(2012)
Proc. IEEE Global Eng. Edu. Conf. (EDUCON)
, pp. 1-9
-
-
Carnegie, D.A.1
Watterson, C.2
Andreae, P.3
Browne, W.N.4
-
22
-
-
77955155102
-
Predicting students drop out: A case study
-
Córdoba, Spain
-
G. W. Dekker, M. Pechenizkiy, and J. M. Vleeshouwers, "Predicting students drop out: A case study," in Proc. 2nd Int. Conf. Edu. Data Mining, vol. 9. Córdoba, Spain, 2009, pp. 41-50.
-
(2009)
Proc. 2nd Int. Conf. Edu. Data Mining
, vol.9
, pp. 41-50
-
-
Dekker, G.W.1
Pechenizkiy, M.2
Vleeshouwers, J.M.3
-
23
-
-
84857478947
-
Educational data mining: A case study for predicting dropout-prone students
-
Jan
-
S. Kotsiantis, "Educational data mining: A case study for predicting dropout-prone students," Int. J. Knowl. Eng. Soft Data Paradigms, vol. 1, no. 2, pp. 101-111, Jan. 2009.
-
(2009)
Int. J. Knowl. Eng. Soft Data Paradigms
, vol.1
, Issue.2
, pp. 101-111
-
-
Kotsiantis, S.1
-
24
-
-
84945911679
-
Predicción del Fracaso Escolar Mediante Técnicas de Minería de Datos
-
C. Márquez-Vera, C. Romero, and S. Ventura, "Predicción del Fracaso Escolar Mediante Técnicas de Minería de Datos," IEEE Revista Iberoamericana de Tecnologías del Aprendizaje, vol. 7, no. 3, pp. 109-117, 2012.
-
(2012)
IEEE Revista Iberoamericana de Tecnologías Del Aprendizaje
, vol.7
, Issue.3
, pp. 109-117
-
-
Márquez-Vera, C.1
Romero, C.2
Ventura, S.3
-
25
-
-
85084013183
-
Predicting drop-out from social behaviour of students
-
Chania, Greece
-
J. Bayer, H. Bydzovská, J. Géryk, T. Obšivac, and L. Popelinsky, "Predicting drop-out from social behaviour of students," in Proc. 5th Int. Conf. Edu. Data Mining (EDM), Chania, Greece, 2012, pp. 103-109.
-
(2012)
Proc. 5th Int. Conf. Edu. Data Mining (EDM)
, pp. 103-109
-
-
Bayer, J.1
Bydzovská, H.2
Géryk, J.3
Obšivac, T.4
Popelinsky, L.5
-
26
-
-
33749558210
-
YALE: Rapid prototyping for complex data mining tasks
-
New York, NY, USA
-
I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz, and T. Euler, "YALE: Rapid prototyping for complex data mining tasks," in Proc. 12th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, New York, NY, USA, 2006, pp. 935-940.
-
(2006)
Proc. 12th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining
, pp. 935-940
-
-
Mierswa, I.1
Wurst, M.2
Klinkenberg, R.3
Scholz, M.4
Euler, T.5
-
27
-
-
76749092270
-
The WEKA data mining software: An update
-
Jun
-
M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, "The WEKA data mining software: An update," ACM SIGKDD Explorations Newslett., vol. 11, no. 1, pp. 10-18, Jun. 2009.
-
(2009)
ACM SIGKDD Explorations Newslett.
, vol.11
, Issue.1
, pp. 10-18
-
-
Hall, M.1
Frank, E.2
Holmes, G.3
Pfahringer, B.4
Reutemann, P.5
Witten, I.H.6
-
28
-
-
0002106691
-
MetaCost: A general method for making classifiers costsensitive
-
P. Domingos, "MetaCost: A general method for making classifiers costsensitive," in Proc. 5th Int. Conf. Knowl. Discovery Data Mining, 1999, pp. 155-164.
-
(1999)
Proc. 5th Int. Conf. Knowl. Discovery Data Mining
, pp. 155-164
-
-
Domingos, P.1
|