메뉴 건너뛰기




Volumn 172, Issue , 2016, Pages 427-437

BeeRBF: A bee-inspired data clustering approach to design RBF neural network classifiers

Author keywords

Bee inspired algorithms; Data classification; Neural network; Optimal data clustering; RBF

Indexed keywords

ALGORITHMS; CLASSIFICATION (OF INFORMATION); CLUSTER ANALYSIS; CLUSTERING ALGORITHMS; FUNCTIONS; NEURAL NETWORKS;

EID: 84946496938     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2015.03.106     Document Type: Article
Times cited : (51)

References (44)
  • 1
    • 0000621802 scopus 로고
    • Multivariable functional interpolation and adaptive networks
    • Broomhead D.S., Lowe D. Multivariable functional interpolation and adaptive networks. Complex Syst. 1988, 2:321-355.
    • (1988) Complex Syst. , vol.2 , pp. 321-355
    • Broomhead, D.S.1    Lowe, D.2
  • 2
    • 0031568361 scopus 로고    scopus 로고
    • A sequential learning scheme for function approximation using minimal radial basis function neural networks
    • Yingwei L., Sundararajan N., Saratchandran P. A sequential learning scheme for function approximation using minimal radial basis function neural networks. Neural Comput. 1997, 9(2):461-478.
    • (1997) Neural Comput. , vol.9 , Issue.2 , pp. 461-478
    • Yingwei, L.1    Sundararajan, N.2    Saratchandran, P.3
  • 3
    • 0031277461 scopus 로고    scopus 로고
    • An efficient method to construct radial basis function neural network classifier
    • Hwang Y.S., Bang S. An efficient method to construct radial basis function neural network classifier. Neural Netw. 1997, 10:1495-1503.
    • (1997) Neural Netw. , vol.10 , pp. 1495-1503
    • Hwang, Y.S.1    Bang, S.2
  • 4
    • 0030197198 scopus 로고    scopus 로고
    • Cooperative-competitive genetic evolution of radial basis function centers and widths for time series prediction
    • Whitehead B.A., Choate T.D. Cooperative-competitive genetic evolution of radial basis function centers and widths for time series prediction. IEEE Trans. Neural Netw. 1996, 7(4):869-880.
    • (1996) IEEE Trans. Neural Netw. , vol.7 , Issue.4 , pp. 869-880
    • Whitehead, B.A.1    Choate, T.D.2
  • 6
    • 0024771475 scopus 로고
    • Pattern classification using neural networks
    • R. P. Lippmann, Pattern classification using neural networks, IEEE Communications Magazine, pp. 47-63, 1989.
    • (1989) IEEE Communications Magazine , pp. 47-63
    • Lippmann, R.P.1
  • 7
    • 0000672424 scopus 로고
    • Fast learning in networks of locally-turned processing units
    • Moody J., Darken C. Fast learning in networks of locally-turned processing units. Neural Comput. 1989, 1:281-294.
    • (1989) Neural Comput. , vol.1 , pp. 281-294
    • Moody, J.1    Darken, C.2
  • 9
    • 6344287812 scopus 로고    scopus 로고
    • A review of genetic algorithms applied to training radial basis function networks
    • Harpham C., Dawson C.W., Brown M.R. A review of genetic algorithms applied to training radial basis function networks. Neural Comput. Appl. 2004, 13(3):193-201.
    • (2004) Neural Comput. Appl. , vol.13 , Issue.3 , pp. 193-201
    • Harpham, C.1    Dawson, C.W.2    Brown, M.R.3
  • 10
    • 28844464693 scopus 로고    scopus 로고
    • Genetic algorithm-trainedrad ial basis function neural networks for modelling photovotaic panels
    • Zhang L., Bai Y.F. Genetic algorithm-trainedrad ial basis function neural networks for modelling photovotaic panels. Eng. Appl. Artif. Intell. 2005, 18(7):833-844.
    • (2005) Eng. Appl. Artif. Intell. , vol.18 , Issue.7 , pp. 833-844
    • Zhang, L.1    Bai, Y.F.2
  • 11
    • 84879894327 scopus 로고    scopus 로고
    • On training RBF neural networks using input-output fuzzy Clustering and particle swarm optimization
    • Tsekouras G.E., Tsimikas J. On training RBF neural networks using input-output fuzzy Clustering and particle swarm optimization. Fuzzy Sets Syst. 2013, 221:65-89.
    • (2013) Fuzzy Sets Syst. , vol.221 , pp. 65-89
    • Tsekouras, G.E.1    Tsimikas, J.2
  • 12
    • 70349647885 scopus 로고    scopus 로고
    • A comparison of RBF neural network training algorithms for inertial sensor based terrain classification
    • Kurban T., Beşdok E. A comparison of RBF neural network training algorithms for inertial sensor based terrain classification. Sensors 2002, 9(8):6312-6329.
    • (2002) Sensors , vol.9 , Issue.8 , pp. 6312-6329
    • Kurban, T.1    Beşdok, E.2
  • 14
    • 2342617734 scopus 로고    scopus 로고
    • Automatic determination of radial basis functions: an immunity-based approach
    • De Castro L.N., Von Zuben F.J. Automatic determination of radial basis functions: an immunity-based approach. Int. J. Neural Syst. 2002, 11(6):523-535.
    • (2002) Int. J. Neural Syst. , vol.11 , Issue.6 , pp. 523-535
    • De Castro, L.N.1    Von Zuben, F.J.2
  • 18
    • 84881241359 scopus 로고    scopus 로고
    • Collective decision-making by bee colonies as model for optimization - the OptBees algorithm
    • Maia R.D., De Castro L.N., Caminhas W.M. Collective decision-making by bee colonies as model for optimization - the OptBees algorithm. Appl. Math. Sci. 2013, 7(87):4327-4351.
    • (2013) Appl. Math. Sci. , vol.7 , Issue.87 , pp. 4327-4351
    • Maia, R.D.1    De Castro, L.N.2    Caminhas, W.M.3
  • 19
    • 84909595832 scopus 로고
    • Interpolation of scattered data: distance matrices and conditionally positive definite functions
    • Springer, Netherlands
    • Micchelli C.A. Interpolation of scattered data: distance matrices and conditionally positive definite functions. Approximation Theory and Spline Functions 1984, vol. 136:143-145. Springer, Netherlands.
    • (1984) Approximation Theory and Spline Functions , vol.136 , pp. 143-145
    • Micchelli, C.A.1
  • 20
    • 0030195189 scopus 로고    scopus 로고
    • Regularized orthogonal least squares algorithm for constructing radial basis function networks
    • Chen S., Chng E.S., Alkadhimi K. Regularized orthogonal least squares algorithm for constructing radial basis function networks. Int. J. Control 1996, 64(5):829-837.
    • (1996) Int. J. Control , vol.64 , Issue.5 , pp. 829-837
    • Chen, S.1    Chng, E.S.2    Alkadhimi, K.3
  • 24
    • 84905369348 scopus 로고    scopus 로고
    • Colônias de Abelhas como Modelo para Agrupamento Ótimo de Dados: Uma proposta e análise paramétrica qualitativa
    • Campina Grande
    • R. D. Maia, W. O. Barbosa and L. N. D. Castro, Colônias de Abelhas como Modelo para Agrupamento Ótimo de Dados: Uma proposta e análise paramétrica qualitativa, in: Proceedings of the XIX Congresso Brasileiro de Automática, Campina Grande, 2012.
    • (2012) Proceedings of the XIX Congresso Brasileiro de Automática
    • Maia, R.D.1    Barbosa, W.O.2    Castro, L.N.D.3
  • 26
    • 0023453329 scopus 로고
    • Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
    • Rousseeuw P.J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987, 20:53-65.
    • (1987) J. Comput. Appl. Math. , vol.20 , pp. 53-65
    • Rousseeuw, P.J.1
  • 28
    • 0000621802 scopus 로고
    • Multivariable functional interpolation and adaptive networks
    • Broomhead D., Lowe D. Multivariable functional interpolation and adaptive networks. Complex Syst. 1988, 2:321-355.
    • (1988) Complex Syst. , vol.2 , pp. 321-355
    • Broomhead, D.1    Lowe, D.2
  • 29
    • 84906050621 scopus 로고    scopus 로고
    • A bee-inspired data clustering approach to design RBF neural network classifiers
    • Springer International Publishing
    • D. P. F. Cruz, R. D. Maia, L. A. d. Silva and L. N. d. Castro, A bee-inspired data clustering approach to design RBF neural network classifiers, in: Advances in Intelligent Systems and Computing, Springer International Publishing, 2014, pp. 545-552.
    • (2014) Advances in Intelligent Systems and Computing , pp. 545-552
    • Cruz, D.P.F.1    Maia, R.D.2    Silva, L.A.D.3    Castro, L.N.D.4
  • 31
    • 0037379825 scopus 로고    scopus 로고
    • A fast training algorithm for RBF networks based on subtractive clustering
    • Sarimveis H., Alexandridis A., Bafas G. A fast training algorithm for RBF networks based on subtractive clustering. Neurocomputing 2003, 51:501-505.
    • (2003) Neurocomputing , vol.51 , pp. 501-505
    • Sarimveis, H.1    Alexandridis, A.2    Bafas, G.3
  • 32
    • 84856745929 scopus 로고    scopus 로고
    • A novel training algorithm for RBF neural network using a hybrid fuzzy clustering approach
    • Niros A.D., Tsekouras G.E A novel training algorithm for RBF neural network using a hybrid fuzzy clustering approach. Fuzzy Sets Syst. 2012, 193:62-84.
    • (2012) Fuzzy Sets Syst. , vol.193 , pp. 62-84
    • Niros, A.D.1    Tsekouras, G.E.2
  • 33
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function networks
    • Chen S., Cowan C., Grant P. Orthogonal least squares learning algorithm for radial basis function networks. Neural Netw. 1991, 2(2):302-309.
    • (1991) Neural Netw. , vol.2 , Issue.2 , pp. 302-309
    • Chen, S.1    Cowan, C.2    Grant, P.3
  • 34
    • 0032690356 scopus 로고    scopus 로고
    • Reformulated radial basis neural networks trained by gradient descent
    • Karayiannis N. Reformulated radial basis neural networks trained by gradient descent. Neural Netw. 1999, 10(3):657-671.
    • (1999) Neural Netw. , vol.10 , Issue.3 , pp. 657-671
    • Karayiannis, N.1
  • 36
    • 0031170740 scopus 로고    scopus 로고
    • A recursive orthogonal least squares algorithm for training RBF networks
    • YU D., GOMM J., WILLIAMS D. A recursive orthogonal least squares algorithm for training RBF networks. Neural Process. Lett. 1997, 5(3):167-176.
    • (1997) Neural Process. Lett. , vol.5 , Issue.3 , pp. 167-176
    • YU, D.1    GOMM, J.2    WILLIAMS, D.3
  • 37
    • 0032594851 scopus 로고    scopus 로고
    • Combined genetic algorithm optimization and regularized orthogonal least squares learning for radial basis function networks
    • Chen S., Wu Y., Luk B. Combined genetic algorithm optimization and regularized orthogonal least squares learning for radial basis function networks. IEEE Trans. Neural Netw. 1999, 10(5):1239-1243.
    • (1999) IEEE Trans. Neural Netw. , vol.10 , Issue.5 , pp. 1239-1243
    • Chen, S.1    Wu, Y.2    Luk, B.3
  • 38
    • 0033732354 scopus 로고    scopus 로고
    • Selecting radial basis function network centers with recursive orthogonal least squares training
    • Gomm J., Yu D. Selecting radial basis function network centers with recursive orthogonal least squares training. IEEE Trans. Neural Netw. 2000, 11(2):306-314.
    • (2000) IEEE Trans. Neural Netw. , vol.11 , Issue.2 , pp. 306-314
    • Gomm, J.1    Yu, D.2
  • 39
    • 84855977752 scopus 로고    scopus 로고
    • Multi-objective hybrid evolutionary algorithms for radial basis function neural network
    • Qasem S.N., Shamsuddin S.M., Zain A.M. Multi-objective hybrid evolutionary algorithms for radial basis function neural network. Knowl. Based Syst. 2012, 27:475-497.
    • (2012) Knowl. Based Syst. , vol.27 , pp. 475-497
    • Qasem, S.N.1    Shamsuddin, S.M.2    Zain, A.M.3
  • 40
    • 37249054534 scopus 로고    scopus 로고
    • Artificial bee colony (ABC) optimization algorithm for training feed-forward neural networks
    • Karaboga D., Akay B., Ozturk C. Artificial bee colony (ABC) optimization algorithm for training feed-forward neural networks. Model. Decis. Artif. Intell. 2007, 4617:318-329.
    • (2007) Model. Decis. Artif. Intell. , vol.4617 , pp. 318-329
    • Karaboga, D.1    Akay, B.2    Ozturk, C.3
  • 41
    • 84887747830 scopus 로고    scopus 로고
    • UCI Machine Learning Repository
    • University of California, Irvine[Online](accessed 05.09.14).
    • K. Bache and M. Lichman, UCI Machine Learning Repository, University of California, Irvine, School of Information and Computer Sciences, 2013. [Online]. Available: (accessed 05.09.14). http://archive.ics.uci.edu/ml.
    • (2013) School of Information and Computer Sciences
    • Bache, K.1    Lichman, M.2
  • 43
    • 84946492966 scopus 로고    scopus 로고
    • Training radial basis function network using the honey bee mating optimization
    • Horng M.-H. Training radial basis function network using the honey bee mating optimization. Comput. Model. New Technol. 2013, 17(3):43-49.
    • (2013) Comput. Model. New Technol. , vol.17 , Issue.3 , pp. 43-49
    • Horng, M.-H.1
  • 44
    • 77957907005 scopus 로고    scopus 로고
    • Radial basis function network based on time variant multi-objective particle swarm optimization for medical diseases diagnosis
    • Qasem S.N., Shamsuddin S.M. Radial basis function network based on time variant multi-objective particle swarm optimization for medical diseases diagnosis. Appl. Soft Comput. 2011, 11(1):1427-1438.
    • (2011) Appl. Soft Comput. , vol.11 , Issue.1 , pp. 1427-1438
    • Qasem, S.N.1    Shamsuddin, S.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.