메뉴 건너뛰기




Volumn 221, Issue , 2013, Pages 65-89

On training RBF neural networks using input-output fuzzy clustering and particle swarm optimization

Author keywords

Fitness function; Input output fuzzy clustering; Particle swarm optimization; Radial basis function neural networks

Indexed keywords

FITNESS FUNCTIONS; INPUT-OUTPUT; INPUT-OUTPUT SPACES; MEMBERSHIP DEGREES; OBJECTIVE FUNCTIONS; PARTICLE SWARM OPTIMIZERS; RADIAL BASIS FUNCTION NEURAL NETWORKS; RBF NEURAL NETWORK;

EID: 84879894327     PISSN: 01650114     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.fss.2012.10.004     Document Type: Article
Times cited : (77)

References (30)
  • 3
    • 0036464756 scopus 로고    scopus 로고
    • The particle swarm - Explosion. Stability, and convergence in a multidimensional complex space
    • M. Clerc, and J. Kennedy The particle swarm - explosion. Stability, and convergence in a multidimensional complex space IEEE Trans. Evol. Comput. 6 1 2002 58 73
    • (2002) IEEE Trans. Evol. Comput. , vol.6 , Issue.1 , pp. 58-73
    • Clerc, M.1    Kennedy, J.2
  • 5
    • 19344375792 scopus 로고    scopus 로고
    • High-speed face recognition based on discrete cosine transform and RBF neural networks
    • M.J. Er, W. Chen, and S. Wu High-speed face recognition based on discrete cosine transform and RBF neural networks IEEE Trans. Neural Networks 16 3 2005 679 6915
    • (2005) IEEE Trans. Neural Networks , vol.16 , Issue.3 , pp. 679-6915
    • Er, M.J.1    Chen, W.2    Wu, S.3
  • 6
    • 67349112774 scopus 로고    scopus 로고
    • Visual RBF network design based on star coordinates
    • O.M.M. Filho, and N.F.F. Ebecken Visual RBF network design based on star coordinates Adv. Eng. Software 40 9 2009 913 919
    • (2009) Adv. Eng. Software , vol.40 , Issue.9 , pp. 913-919
    • Filho, O.M.M.1    Ebecken, N.F.F.2
  • 8
    • 0037405958 scopus 로고    scopus 로고
    • A fuzzy hybrid algorithm for radial basis function neural network application in human face recognition
    • J.H. Haddadnia, K. Faez, and M. Ahmadi A fuzzy hybrid algorithm for radial basis function neural network application in human face recognition Pattern Recognition 36 2003 1187 1202
    • (2003) Pattern Recognition , vol.36 , pp. 1187-1202
    • Haddadnia, J.H.1    Faez, K.2    Ahmadi, M.3
  • 10
    • 2542619881 scopus 로고    scopus 로고
    • Robust and adaptive back stepping control for nonlinear systems using RBF neural networks
    • Y. Li, S. Qiang, X. Zhuang, and O. Kaynak Robust and adaptive back stepping control for nonlinear systems using RBF neural networks IEEE Trans. Neural Networks 15 5 2004 693 701
    • (2004) IEEE Trans. Neural Networks , vol.15 , Issue.5 , pp. 693-701
    • Li, Y.1    Qiang, S.2    Zhuang, X.3    Kaynak, O.4
  • 11
    • 35048874685 scopus 로고    scopus 로고
    • Training radial basis function networks with particle swarms
    • Y. Liu, Q. Zheng, Z. Shi, J. Chen, Training radial basis function networks with particle swarms, in: Lecture Notes in Computer Science, vol. 3173, 2004, pp. 317-322.
    • (2004) Lecture Notes in Computer Science , vol.3173 , pp. 317-322
    • Liu, Y.1    Zheng, Q.2    Shi, Z.3    Chen, J.4
  • 12
    • 0346972435 scopus 로고    scopus 로고
    • Stochastic simulations of web search engines RBF versus second-order regression models
    • G. Meghabghab, and A. Kandel Stochastic simulations of web search engines RBF versus second-order regression models Inf. Sci. 159 1-2 2004 1 28
    • (2004) Inf. Sci. , vol.159 , Issue.12 , pp. 1-28
    • Meghabghab, G.1    Kandel, A.2
  • 13
    • 0000672424 scopus 로고
    • Fast learning in networks of locally-tuned processing units
    • J. Moody, and C.J. Darken Fast learning in networks of locally-tuned processing units Neural Comput. 1 1989 281 294
    • (1989) Neural Comput. , vol.1 , pp. 281-294
    • Moody, J.1    Darken, C.J.2
  • 15
    • 84856745929 scopus 로고    scopus 로고
    • A novel training algorithm for RBF neural network using a hybrid fuzzy clustering approach
    • A.D. Niros, and G.E. Tsekouras A novel training algorithm for RBF neural network using a hybrid fuzzy clustering approach Fuzzy Sets Syst. 193 2012 62 84
    • (2012) Fuzzy Sets Syst. , vol.193 , pp. 62-84
    • Niros, A.D.1    Tsekouras, G.E.2
  • 16
    • 78249255465 scopus 로고    scopus 로고
    • Polynomial-based radial basis function neural networks (P-RBF NNs) realized with the aid of particle swarm optimization
    • S.-K. Oh, W.-D. Kim, W. Pedrycz, and B.-J. Park Polynomial-based radial basis function neural networks (P-RBF NNs) realized with the aid of particle swarm optimization Fuzzy Sets Syst. 163 2011 54 77
    • (2011) Fuzzy Sets Syst. , vol.163 , pp. 54-77
    • Oh, S.-K.1    Kim, W.-D.2    Pedrycz, W.3    Park, B.-J.4
  • 17
    • 0029360028 scopus 로고
    • On clustering validity for the fuzzy c-means model
    • N.R. Pal, and J.C. Bezdek On clustering validity for the fuzzy c-means model IEEE Trans. Fuzzy Syst. 3 1995 370 379
    • (1995) IEEE Trans. Fuzzy Syst. , vol.3 , pp. 370-379
    • Pal, N.R.1    Bezdek, J.C.2
  • 18
    • 70350272885 scopus 로고    scopus 로고
    • Granular neural networks and their development through context-based clustering and adjustable dimensionality of receptive fields
    • H.S. Park, W. Pedrycz, and S.K. Oh Granular neural networks and their development through context-based clustering and adjustable dimensionality of receptive fields IEEE Trans. Neural Networks 20 10 2009 1604 1616
    • (2009) IEEE Trans. Neural Networks , vol.20 , Issue.10 , pp. 1604-1616
    • Park, H.S.1    Pedrycz, W.2    Oh, S.K.3
  • 19
    • 0032122726 scopus 로고    scopus 로고
    • Conditional fuzzy clustering in the design of radial basis function neural networks
    • W. Pedrycz Conditional fuzzy clustering in the design of radial basis function neural networks IEEE Trans. Neural Networks 9 4 1998 601 612
    • (1998) IEEE Trans. Neural Networks , vol.9 , Issue.4 , pp. 601-612
    • Pedrycz, W.1
  • 20
    • 34247553230 scopus 로고    scopus 로고
    • Fuzzy vector quantization with the particle swarm optimization a study in fuzzy granulation-degranulation information processing
    • W. Pedrycz, and K. Hirota Fuzzy vector quantization with the particle swarm optimization a study in fuzzy granulation-degranulation information processing Signal Process. 87 2007 2061 2074
    • (2007) Signal Process. , vol.87 , pp. 2061-2074
    • Pedrycz, W.1    Hirota, K.2
  • 21
    • 55949110248 scopus 로고    scopus 로고
    • A granular-oriented development of functional radial basis function neural networks
    • W. Pedrycz, H.S. Park, and S.K. Oh A granular-oriented development of functional radial basis function neural networks Neurocomputing 72 2008 420 435
    • (2008) Neurocomputing , vol.72 , pp. 420-435
    • Pedrycz, W.1    Park, H.S.2    Oh, S.K.3
  • 23
    • 77957907005 scopus 로고    scopus 로고
    • Radial basis function network based on time variant multi-objective particle swarm optimization for medical diseases diagnosis
    • S.N. Qasem, and S.M. Shamsuddin Radial basis function network based on time variant multi-objective particle swarm optimization for medical diseases diagnosis Appl. Soft Comput. 11 2011 1427 1438
    • (2011) Appl. Soft Comput. , vol.11 , pp. 1427-1438
    • Qasem, S.N.1    Shamsuddin, S.M.2
  • 24
    • 77950628563 scopus 로고    scopus 로고
    • The design methodology of radial basis function neural networks based on fuzzy K-nearest neighbors approach
    • S.B. Roh, T.C. Ahn, and W. Pedrycz The design methodology of radial basis function neural networks based on fuzzy K-nearest neighbors approach Fuzzy Sets Syst. 161 13 2010 1803 1822
    • (2010) Fuzzy Sets Syst. , vol.161 , Issue.13 , pp. 1803-1822
    • Roh, S.B.1    Ahn, T.C.2    Pedrycz, W.3
  • 25
    • 0001625076 scopus 로고
    • Algorithms for better representation and faster learning in radial basis function networks
    • D.S. Touretzky (Ed.)
    • A. Saha, J.D. Keeler, Algorithms for better representation and faster learning in radial basis function networks, in: D.S. Touretzky (Ed.), Advances in Neural Information Processing Systems, 1989, pp. 482-489.
    • (1989) Advances in Neural Information Processing Systems , pp. 482-489
    • Saha, A.1    Keeler, J.D.2
  • 26
    • 0037138659 scopus 로고    scopus 로고
    • A fast and efficient algorithm for training radial basis function neural networks based on a fuzzy partition of the input space
    • H. Sarimveis, A. Alexandridis, G.E. Tsekouras, and G. Bafas A fast and efficient algorithm for training radial basis function neural networks based on a fuzzy partition of the input space Ind. Eng. Chem. Res. 41 2002 751 759
    • (2002) Ind. Eng. Chem. Res. , vol.41 , pp. 751-759
    • Sarimveis, H.1    Alexandridis, A.2    Tsekouras, G.E.3    Bafas, G.4
  • 27
    • 77954439734 scopus 로고    scopus 로고
    • RBF neural network based on particle swarm optimization
    • Y. Shao, Q. Chen, H. Jiang, RBF neural network based on particle swarm optimization, in: Lecture Notes in Computer Science, vol. 6063, 2010, pp. 169-176.
    • (2010) Lecture Notes in Computer Science , vol.6063 , pp. 169-176
    • Shao, Y.1    Chen, Q.2    Jiang, H.3
  • 28
    • 33745203522 scopus 로고    scopus 로고
    • Improving RBF networks performance in regression tasks by means of a supervised fuzzy clustering
    • A. Staiano, R. Tagliaferri, and W. Pedrycz Improving RBF networks performance in regression tasks by means of a supervised fuzzy clustering Neurocomputing 69 2006 1570 1581
    • (2006) Neurocomputing , vol.69 , pp. 1570-1581
    • Staiano, A.1    Tagliaferri, R.2    Pedrycz, W.3
  • 30
    • 0034227542 scopus 로고    scopus 로고
    • Analysis of input-output clustering for determining centers of RBFNN
    • Z. Uykan, C. Guzelis, M.E. Celebi, and H.N. Koivo Analysis of input-output clustering for determining centers of RBFNN IEEE Trans. Neural Networks 11 4 2000 851 858
    • (2000) IEEE Trans. Neural Networks , vol.11 , Issue.4 , pp. 851-858
    • Uykan, Z.1    Guzelis, C.2    Celebi, M.E.3    Koivo, H.N.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.